[1]魏 清,艾玲梅,叶雪娜.一种高分辨率遥感图像道路自动提取方法[J].计算机技术与发展,2019,29(06):130-133.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 027]
 WEI Qing,AI Ling-mei,YE Xue-na.An Automatic Road Extraction Method for High-resolution Remote Sensing Images[J].,2019,29(06):130-133.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 027]
点击复制

一种高分辨率遥感图像道路自动提取方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年06期
页码:
130-133
栏目:
应用开发研究
出版日期:
2019-06-10

文章信息/Info

Title:
An Automatic Road Extraction Method for High-resolution Remote Sensing Images
文章编号:
1673-629X(2019)06-0130-04
作者:
魏 清1 艾玲梅2 叶雪娜2
1. 陕西省交通规划设计研究院,陕西 西安 710065; 2. 陕西师范大学 计算机科学学院,陕西 西安 710119
Author(s):
WEI Qing1 AI Ling-mei2 YE Xue-na2
1. Shaanxi Provincial Transport Planning Design and Research Institute,Xi’an 710065,China;2. School of Computer Science,Shaanxi Normal University,Xi’an 710119,China
关键词:
道路提取卷积神经网络批量梯度下降算法形状特征分析
Keywords:
road extractionconvolution neural networkmini-batch gradient descentshape feature analysis
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 06. 027
摘要:
高分辨率遥感图像道路提取是遥感界关注的重要研究领域,如何快速、有效、智能地进行遥感信息分析和处理是当今遥感界迫切需要解决的问题,自动道路提取方法称为道路提取研究的热点。 针对道路提取受遥感图像噪声和树木阴影等复杂自然场景因素影响的问题,提出一种基于卷积神经网络(CNN)和数学形态学算法相结合的自动道路提取方法。首先,构建出深度卷积神经网络模型,在训练卷积神经网络模型时,通过改进的批量随机梯度下降算法(MBGD)来训练深度卷积神经网络;然后,利用训练好的深度卷积神经网络进行道路特征的提取;最后,结合数学形态学优化算法进一步优化道路提取结果。 实验结果表明,该方法能提取出完整的道路区域。
Abstract:
Road extraction from high resolution remote sensing images is an important research field of remote sensing community. How to analyze and process remote sensing information quickly,effectively and intelligently is an urgent problem to be solved in the field of remote sensing. Automatic road extraction is the hot spot in the research of road extraction. Aiming at the problem that road extraction is affected by complex natural scene factors such as remote sensing image noise and tree shadow,we propose an automatic road extraction method based on convolution neural network (CNN) and mathematical morphology algorithm. Firstly,the deep convolution neural network is constructed and trained by the improved MBGD algorithm when training convolution neural network model. Then,the trained deep convolution neural network is used to extract the road features. Finally,the morphological optimization algorithm is used to further optimize the road extraction results. Experiment shows that this method can extract complete road.

相似文献/References:

[1]丁美林 李光耀 张巧芳.Snakes模型在卫星图片道路提取中的应用[J].计算机技术与发展,2010,(01):67.
 DING Mei-lin,LI Guang-yao,ZHANG Qiao-fang.Application of Road Extraction in Satellite Images Based on Snakes Model[J].,2010,(06):67.
[2]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].,2016,26(06):31.
[3]邓宗平,赵启军,陈虎. 基于深度学习的人脸姿态分类方法[J].计算机技术与发展,2016,26(07):11.
 DEND Zong-ping,ZHAO Qi-jun,CHEN Hu. Face Pose Classification Method Based on Deep Learning[J].,2016,26(06):11.
[4]戴晓薇,赵启军. 基于回归的指纹方向场估计[J].计算机技术与发展,2017,27(01):1.
 DAI Xiao-wei,ZHAO Qi-jun. Fingerprint Orientation Field Estimation Based on Regression[J].,2017,27(06):1.
[5]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(06):7.
[6]周成伟. 基于卷积神经网络的自然场景中数字识别[J].计算机技术与发展,2017,27(11):101.
 ZHOU Cheng-wei. Recognition of Numbers in Natural Scene with Convolutional Neural Network[J].,2017,27(06):101.
[7]曲之琳,胡晓飞.基于改进激活函数的卷积神经网络研究[J].计算机技术与发展,2017,27(12):77.[doi:10.3969/ j. issn.1673-629X.2017.12.017]
 QU Zhi-lin,HU Xiao-fei.Research on Convolutional Neural Network Based on Improved Activation Function[J].,2017,27(06):77.[doi:10.3969/ j. issn.1673-629X.2017.12.017]
[8]傅 鹏,谢世朋.基于级联卷积神经网络的车牌定位[J].计算机技术与发展,2018,28(01):134.[doi:10.3969/ j. issn.1673-629X.2018.01.029]
 FU Peng,XIE Shi-peng.License Plate Location Based on Cascaded Convolution Neural Network[J].,2018,28(06):134.[doi:10.3969/ j. issn.1673-629X.2018.01.029]
[9]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(06):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[10]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(06):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]

更新日期/Last Update: 2019-06-10