[1]韩欣欣,叶奇玲.基于 SIFT 和 HOG 特征融合的人体行为识别方法[J].计算机技术与发展,2019,29(06):71-73.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 015]
 HAN Xin-xin,YE Qi-ling.Human Action Recognition Based on Feature Fusion of SIFT and HOG[J].,2019,29(06):71-73.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 015]
点击复制

基于 SIFT 和 HOG 特征融合的人体行为识别方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年06期
页码:
71-73
栏目:
智能、算法、系统工程
出版日期:
2019-06-10

文章信息/Info

Title:
Human Action Recognition Based on Feature Fusion of SIFT and HOG
文章编号:
1673-629X(2019)06-0071-03
作者:
韩欣欣叶奇玲
南京邮电大学 通信工程学院,江苏 南京 210003
Author(s):
HAN Xin-xinYE Qi-ling
School of Communication Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
行为识别特征融合尺度不变特征变换方向梯度直方图支持向量机
Keywords:
action recognitionfeatures fusionSIFTHOGsupport vector machine
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 06. 015
摘要:
行为识别是视频分析的一个核心任务,而行为特征的提取与选择直接影响识别效果。 针对单一特征往往受到人体外观、环境、摄像机设置等因素的影响而识别效果不佳的问题,提出一种分别提取尺度不变特征变换(SIFT)和方向梯度直方图(HOG)的特征并形成融合特征,再利用支持向量机(SVM)完成特征分类的行为识别方法。 基于 Matlab 人体行为识别和检测的研究,通过采用 KTH 和 Weizmann 人体行为库来验证该算法的有效性。 实验结果表明,该算法在人体行为识别中识别率可达到 90%以上,比单独使用上述两种特征或者其他传统的描述子更高效,同时也能更好地适应光照等外部因素的变化,得到更好的识别率。
Abstract:
Action recognition is a core task of video analysis,and the extraction and selection of behavior features directly affect the recognition effect. In view of the problem of bad recognition effect for single feature caused by human appearance,environment,camera settings and other factors,we propose a action recognition method which respectively extracts scale-invariant feature transform (SIFT) and direction gradient histogram (HOG) and fuse them,and then adopts support vector machine (SVM) for feature classification. Based on research on Matlab human action recognition and detection,the validity of the algorithm is verified by KTH and Weizmann human behavior libraries. Experiment shows that the recognition rate of the algorithm in human action recognition can reach more than 90%, which is more efficient than above two features alone or other traditional descriptors,and can better adapt to the change of external factors such as illumination and get better recognition rate.

相似文献/References:

[1]周伟 武港山.基于显著图的花卉图像分类算法研究[J].计算机技术与发展,2011,(11):15.
 ZHOU Wei,WU Gang-shan.Research on Saliency Map Based Flower Image Classification Algorithm[J].,2011,(06):15.
[2]王博,李燕.视频序列中的时空兴趣点检测及其自适应分析[J].计算机技术与发展,2014,24(04):49.
 WANG Bo,LI Yan.Space-time Interest Points Detection in Video Sequence and Its Adaptive Analysis[J].,2014,24(06):49.
[3]高蕾[],曹建忠[]. 基于可穿戴传感器的行为识别随机逼近模型[J].计算机技术与发展,2014,24(12):83.
 GAO Lei[],CAO Jian-zhong[]. Activity Recognition Using Stochastic Approximation Model Based on Wearable Sensor[J].,2014,24(06):83.
[4]石爱辉,程勇,曹雪虹.结合码本优化和特征融合的人体行为识别方法[J].计算机技术与发展,2018,28(02):107.[doi:10.3969/j.issn.1673-629X.2018.02.024]
 SHI Ai-hui,CHENG Yong,CAO Xue-hong.A Human Action Recognition Method Combined with Codebook Optimization and Feature Fusion[J].,2018,28(06):107.[doi:10.3969/j.issn.1673-629X.2018.02.024]
[5]黎粤华,单磊,田仲富,等. 基于多特征融合的视频烟雾检测[J].计算机技术与发展,2016,26(01):129.
 LI Yue-hua,SHAN Lei,TIAN Zhong-fu,et al. Video Smoke Detection Based on Multi Feature Fusion Technology[J].,2016,26(06):129.
[6]黄菲菲[],曹江涛[],姬晓飞[]. 基于多通道信息融合的双人交互动作识别算法[J].计算机技术与发展,2016,26(03):58.
 HUANG Fei-fei[],CAO Jiang-tao[],JI Xiao-fei[]. Two-human Interaction Recognition Algorithm Based on Multi-channels Information Fusion[J].,2016,26(06):58.
[7]刘加运,李玉惠,李勃,等. 一种多维特征融合的车辆对象同一性匹配方法[J].计算机技术与发展,2016,26(04):167.
 LIU Jia-yun,LI Yu-hui,LI Bo,et al. A Vehicle Object Identity Matching Method of Multidimensional Feature Combination[J].,2016,26(06):167.
[8]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(06):19.
[9]张雅倩,曾卫明,石玉虎.基于特征融合与稀疏表示的人耳识别[J].计算机技术与发展,2017,27(12):7.
 ZHANG Ya-qian,ZENG Wei-min,SHI Yu-hu.Ear Recognition Based on Feature Fusion and Sparse Representation[J].,2017,27(06):7.
[10]谭程午,夏利民,王 嘉.基于融合特征的群体行为识别[J].计算机技术与发展,2018,28(01):17.[doi:10.3969/ j. issn.1673-629X.2018.01.004]
 TAN Cheng-wu,XIA Li-min,WANG Jia.Recognition of Human Group Action Based on Fusion Features[J].,2018,28(06):17.[doi:10.3969/ j. issn.1673-629X.2018.01.004]

更新日期/Last Update: 2019-06-10