[1]李蕾,杨丽花.基于知网的词语语义相似度改进算法[J].计算机技术与发展,2019,29(04):42-46.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 009]
 LI Lei,YANG Li-hua.Improved Algorithm of Word Semantic Similarity Based on HowNet[J].,2019,29(04):42-46.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 009]
点击复制

基于知网的词语语义相似度改进算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年04期
页码:
42-46
栏目:
智能、算法、系统工程
出版日期:
2019-04-10

文章信息/Info

Title:
Improved Algorithm of Word Semantic Similarity Based on HowNet
文章编号:
1673-629X(2019)04-0042-05
作者:
李蕾杨丽花
南京邮电大学 江苏省无线通信重点实验室,江苏 南京 210003
Author(s):
LI LeiYANG Li-hua
Key Laboratory of Wireless Communication of Jiangsu Province,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
知网词语语义相似度义原密度义原深度义原距离
Keywords:
HowNetsemantic similarity of wordsdensity of sememedepth of sememedistance of sememe
分类号:
TP311
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 04. 009
摘要:
词语语义相似度计算在很多领域都有广泛应用,而目前常用的基于知网的词语语义相似度计算方法由于未深入考虑同一棵树中的两个不同义原的可达路径上所有义原节点的密度对义原距离的影响,或未考虑义原深度与义原密度的主次关系,导致计算结果不够精确,从而使其应用受限。针对该问题,给出了一个新的节点间边权重函数,通过在边权重函数中引入两义原可达路径上所有义原节点的密度,并利用权重因子来调整义原深度和义原密度对义原距离的影响,从而提出一种改进的基于知网的词语语义相似度计算方法。实验结果表明,该方法可以更有效地提高词语语义相似度计算精度,比现有方法更具有实用性。
Abstract:
Semantic similarity of words has been widely used in many fields. The current word semantic similarity calculation method based on HowNet does not deeply consider the influence of the density of all the semantically original nodes on the reachable path of two different sememes in the same tree,or also does not consider in depth with the primary and secondary relationship between the density and the depth of sememe,which causes the calculation result to be inaccurate. To solve the problem,we propose a new method using the density of all sememe nodes on the reachable path in the edge weight function,and the proposed method employs the weight factor to adjust the influence of the depth of sememe and the density of sememe on the distance of sememe. The simulation shows that the proposed algorithm can effectively improve the accuracy of the semantic similarity calculation of words,and is more practical than the existing methods.

相似文献/References:

[1]张明宝 马静.一种基于知网的中文词义消歧算法[J].计算机技术与发展,2009,(02):9.
 ZHANG Ming-bao,MA Jing.An Approach to Chinese Word Sense Disambiguation Based on HowNet[J].,2009,(04):9.
[2]魏凯斌 冉延平 余牛.语义相似度的计算方法研究与分析[J].计算机技术与发展,2010,(07):102.
 WEI Kai-bin,RAN Yan-ping,YU Niu.The Research and Analysis of Computing Methods on Semantic Similarity[J].,2010,(04):102.
[3]闫蓉 张蕾.一种新的汉语词义消歧方法[J].计算机技术与发展,2006,(03):22.
 YAN Rong,ZHANG Lei.New Chinese Word Sense Disambiguation Method[J].,2006,(04):22.
[4]周永梅 陶红 陈姣姣 张再跃.自动问答系统中的句子相似度算法的研究[J].计算机技术与发展,2012,(05):75.
 ZHOU Yong-mei,TAO Hong,CHEN Jiao-jiao,et al.Study on Sentence Similarity Approach of Automatic Ask & Answer System[J].,2012,(04):75.
[5]张培颖[],房龙云[]. 多特征结合的词语相似度计算模型[J].计算机技术与发展,2014,24(12):37.
 ZHANG Pei-ying[],FANG Long-yun[]. Word Similarity Computation Model of Multi-features Combination[J].,2014,24(04):37.
[6]赵涛[],张太红[][],陈燕红[]. 中文农业网页去重及相似度判断研究[J].计算机技术与发展,2015,25(01):191.
 ZHAO Tao[],ZHANG Tai-hong[][],CHEN Yan-hong[]. Research on Duplicate Removal and Similarity Evaluation of Chinese Agricultural Web Pages[J].,2015,25(04):191.
[7]王小林,陆骆勇,邰伟鹏. 基于信息熵的新的词语相似度算法研究[J].计算机技术与发展,2015,25(09):119.
 WANG Xiao-lin,LU Luo-yong,TAI Wei-peng. Research of a New Algorithm of Words Similarity Based on Information Entropy[J].,2015,25(04):119.
[8]闫红[],李付学[],周云[]. 基于HowNet句子相似度的计算[J].计算机技术与发展,2015,25(11):53.
 YAN Hong[],LI Fu-xue[],ZHOU Yun[]. Calculation of Sentence Similarity Based on HowNet[J].,2015,25(04):53.
[9]建宇,周爱武,肖云,等. 基于特征空间的文本聚类[J].计算机技术与发展,2017,27(09):75.
 HUANG Jian-yu,ZHOU Ai-wu,XIAO Yun,et al. Text Clustering Based on Feature Space[J].,2017,27(04):75.
[10]殷 硕,王卫亚,柳有权.基于语义特征抽取的文本聚类研究[J].计算机技术与发展,2020,30(03):46.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 009]
 YIN Shuo,WANG Wei-ya,LIU You-quan.Research on Text Clustering Based on Semantic Feature Extraction[J].,2020,30(04):46.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 009]
[11]吴旭东 成卫青 黄卫东.改进的主客观结合的词语语义相似度算法[J].计算机技术与发展,2012,(09):45.
 WU Xu-dong,CHENG Wei-qing,HUANG Wei-dong.An Improved Subjective and Objective Combination Method for Measuring Word Semantic Similarity[J].,2012,(04):45.

更新日期/Last Update: 2019-04-10