[1]贺辉,陈思佳,黄静.一种改善光照对深度人脸识别影响的方法[J].计算机技术与发展,2019,29(04):38-41.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 008]
 HE Hui,CHEN Si-jia,HUANG Jing.An Improved Illumination Approach in Deep Face Recognition[J].,2019,29(04):38-41.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 008]
点击复制

一种改善光照对深度人脸识别影响的方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年04期
页码:
38-41
栏目:
智能、算法、系统工程
出版日期:
2019-04-10

文章信息/Info

Title:
An Improved Illumination Approach in Deep Face Recognition
文章编号:
1673-629X(2019)04-0038-04
作者:
贺辉陈思佳黄静
北京师范大学珠海分校 信息技术学院,广东 珠海 519087
Author(s):
HE HuiCHEN Si-jiaHUANG Jing
School of Information Technology,Beijing Normal University,Zhuhai,Zhuhai 519087,China
关键词:
人脸识别深度学习光照视网膜大脑皮层增强
Keywords:
face recognitiondeep learningilluminationRetinex reinforcement
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 04. 008
摘要:
在人脸识别领域,消除光照变化的不利影响一直以来都是一个难以解决的问题。而与过去的机器学习模型不同,深度学习模型的结构具有和人类视觉神经结构相似的特性。这虽然使模型表现出了非常好的识别效果,但也使模型变得难以解释,以至于以往的人脸光照预处理方法不再可靠。考虑到卷积神经网络具有生物视觉神经的特点,文中在带彩色恢复的多尺度视网膜增强(MSRCR)方法的基础上,结合对比度增强处理,提出了一种类视网膜大脑皮层增强法,以改善基于深度学习的人脸识别模型中光照不均造成的错误识别问题。同时,与基于子空间统计的方法、基于光照不变表示的方法、基于直方图均衡化方法进行了多组对比实验,结果显示该方法比其他方法更有效,可使深度学习模型的识别率显著提高。
Abstract:
It has always been a difficult problem to eliminate the adverse effects of varying illumination in face recognition. Different fromexisted machine learning models,the structure of deep learning model is similar to that of human visual nerve. This makes the modelshow better recognition effect,but also makes it difficult to explain,so that the previous face illumination pretreatment method is no longer reliable. Therefore,considering the convolutional neural network owning characteristics of biological visual nerve,on the basis of multiscale Retinex with color restoration (MSRCR),combining contrast enhancement processing,we propose a Retinex enhancement methodto improve the error identification problem caused by uneven illumination in face recognition model based on deep learning. And compared with the methods based on subspace statistics,illumination invariant representation and histogram equalization,the results show thatthis method is more effective than other methods,and can significantly improve the recognition rate of the deep learning model.

相似文献/References:

[1]徐钊,吴光敏,覃世欢.基于AccelDSP的LBP算法在人脸识别中的应用[J].计算机技术与发展,2014,24(01):51.
 XU Zhao,WU Guang-min,QIN Shi-huan.Application of LBP Algorithm Based on AccelDSP in Face Recognition[J].,2014,24(04):51.
[2]时书剑 马燕.基于Gabor滤波和KPCA的人脸识别方法[J].计算机技术与发展,2010,(04):51.
 SHI Shu-jian,MA Yan.Face Recognition Based on Gabor Filters and Kernel Principal Component Analysis[J].,2010,(04):51.
[3]袁健 姚明海.基于简化局部二元法的人脸特征提取[J].计算机技术与发展,2009,(06):84.
 YUAN Jian,YAO Ming-hai.Facial Feature Extraction Based on Simplified Local Binary Patterns[J].,2009,(04):84.
[4]李伟.人脸识别算法在智能手机上的实现[J].计算机技术与发展,2008,(01):161.
 LI Wei.Implementation of Face Identification in Intelligent Mobile Telephone[J].,2008,(04):161.
[5]黄国宏 刘刚.一种新的基于Fisher准则的线性特征提取方法[J].计算机技术与发展,2008,(05):227.
 HUANG Guo-hong,LIU Gang.A New Linear Feature Extraction Method Based on Fisher Criterion[J].,2008,(04):227.
[6]孙晓玲 侯德文 储凡静.人脸识别中的眼睛定位方法[J].计算机技术与发展,2008,(10):46.
 SUN Xiao-ling,HOU De-wen,CHU Fan-jing.Eye Location in Face Recogniton[J].,2008,(04):46.
[7]王静 谭同德.基于梯度和模板二次匹配的人眼定位[J].计算机技术与发展,2007,(10):144.
 WANG Jing,TAN Tong-de.A Method to Eyes Location Based on Step- Direction and Templet - Matching[J].,2007,(04):144.
[8]高宏娟 潘晨.基于非负矩阵分解的人脸识别算法的改进[J].计算机技术与发展,2007,(11):63.
 GAO Hong-juan,PAN Chen.Improved Face Recognition Algorithm Based on Non- Negative Matrix Factorization[J].,2007,(04):63.
[9]徐勇 张海 周森鑫 王辉.基于统计学习理论的人脸识别方法研究[J].计算机技术与发展,2007,(11):118.
 XU Yong,ZHANG Hai,ZHOU Sen-xin,et al.Research on Face Recognition Based on Statistical Learning Theory[J].,2007,(04):118.
[10]马驰 阮秋琦.基于离散微粒群优化算法的SVM参数选择[J].计算机技术与发展,2007,(12):20.
 MA Chi,RUAN Qiu-qi.Parameter Selection for SVM Based on Discrete PSO[J].,2007,(04):20.
[11]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].,2020,30(04):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[12]解奕鹏,秦品乐,曾建潮,等.基于姿态注意力的特定角度人脸正面化网络[J].计算机技术与发展,2023,33(07):47.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 007]
 XIE Yi-peng,QIN Pin-le,ZENG Jian-chao,et al.Face Frontalization Network of Specific Angle Based on Pose Attention[J].,2023,33(04):47.[doi:10. 3969 / j. issn. 1673-629X. 2023. 07. 007]

更新日期/Last Update: 2019-04-10