[1]王晓妮,段群,韩建刚.基于云计算的数据挖掘系统设计与实现[J].计算机技术与发展,2019,29(03):178-182.[doi:10.3969/ j. issn.1673-629X.2019.03.037]
 WANG Xiao-ni,DUAN Qun,HAN Jian-gang.Design and Implementation of Data Mining System Based on Cloud Computing[J].,2019,29(03):178-182.[doi:10.3969/ j. issn.1673-629X.2019.03.037]
点击复制

基于云计算的数据挖掘系统设计与实现()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年03期
页码:
178-182
栏目:
应用开发研究
出版日期:
2019-03-10

文章信息/Info

Title:
Design and Implementation of Data Mining System Based on Cloud Computing
文章编号:
1673-629X(2019)03-0178-05
作者:
王晓妮1段群2韩建刚3
1. 咸阳师范学院 信息中心,陕西 咸阳 712000;2. 咸阳师范学院 计算机学院,陕西 咸阳 712000;3. 西北机电工程研究所 生产部电调室,陕西 咸阳 712000
Author(s):
WANG Xiao-ni1DUAN Qun2HAN Jian-gang3
1. Information Center,Xianyang Normal University,Xianyang 712000,China;2. School of Computer Science,Xianyang Normal University,Xianyang 712000,China;3. Electric Control Room of Production Department,Northwest Electrical and Mechanical Engineering Resea
关键词:
云计算数据挖掘海量数据Map / Reduce
Keywords:
cloud computingdata miningmassive dataMap / Reduce
分类号:
TP302
DOI:
10.3969/ j. issn.1673-629X.2019.03.037
摘要:
为了解决数据出现指数式增长所导致的海量数据与传统数据挖掘系统计算能力有限的矛盾日益尖锐这个问题,提出了一种将云计算技术和数据挖掘有机结合的解决方案。 通过采用 Map / Reduce 这种能够处理大量半结构化数据集合的并行编程模型方法,将云计算技术融入海量数据挖掘过程中,设计并实现了基于云计算的数据挖掘系统。 通过对高校师生在图书馆的电子文献资料查阅日志数据集的挖掘分析,对该系统的性能进行了测试,表明该系统能够实现根据用户需求为其提供即时服务。 实验结果表明,该系统的运行效率和挖掘速度均高于单机系统,而且随着数据量的增加,挖掘效率的优势愈发明显。 故该系统能够满足用户需求,可以有效解决传统数据挖掘系统中的技术瓶颈。
Abstract:
In order to solve the problem of the ever-increasing contradiction between the massive data and the limited computing capacity of traditional data mining system caused by the exponential growth of data,we propose a solution combined cloud computing technologyand data mining organic. By using Map / Reduce,a parallel programming model method that can handle a large number of semi-structured data collections,cloud computing technology is integrated into massive data mining process,and a cloud-based data mining system is designed and implemented. This system is tested by excavating and analyzing log datasets of university educators and students in library e-documents. The results prove that the system can provide even services for users according to their needs. The experiment shows that the running efficiency and speed of the system are higher than that of the single machine system,and with the increase of data volume,the advantage of mining efficiency is more obvious. Therefore,the system can meet users’ needs and effectively solve the technical bottleneck of traditional data mining systems.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(03):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(03):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(03):235.
[4]王茜,朱志祥,史晨昱,等.应用于数据库安全保护的加解密引擎系统[J].计算机技术与发展,2014,24(01):143.
 WANG Qian[],ZHU Zhi-xiang[],SHI Chen-yu[],et al.Encryption and Decryption Engine System Applying to Database Security and Detection[J].,2014,24(03):143.
[5]陈丹伟 黄秀丽 任勋益.云计算及安全分析[J].计算机技术与发展,2010,(02):99.
 CHEN Dan-wei,HUANG Xiu-li,REN Xun-yi.Analysis of Cloud Computing and Cloud Security[J].,2010,(03):99.
[6]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(03):114.
[7]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(03):229.
[8]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(03):93.
[9]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(03):105.
[10]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(03):84.
[11]李玲娟 张敏.云计算环境下关联规则挖掘算法的研究[J].计算机技术与发展,2011,(02):43.
 LI Ling-juan,ZHANG Min.Research on Algorithms of Mining Association Rule under Cloud Computing Environment[J].,2011,(03):43.
[12]贺瑶,王文庆,薛飞.基于云计算的海量数据挖掘研究[J].计算机技术与发展,2013,(02):69.
[13]陈光.基于大数据的数据服务应用研究[J].计算机技术与发展,2018,28(08):129.[doi:10.3969/ j. issn.1673-629X.2018.08.027]
 CHEN Guang.Research on Data Service Based on Big Data[J].,2018,28(03):129.[doi:10.3969/ j. issn.1673-629X.2018.08.027]

更新日期/Last Update: 2019-03-10