[1]杨珏.基于遗传算法的机场特种车辆调度应用研究[J].计算机技术与发展,2019,29(03):164-168.[doi:10.3969/ j. issn.1673-629X.2019.03.034]
 YANG Jue.Research on Airport Special Vehicle Scheduling Based on Genetic Algorithm[J].,2019,29(03):164-168.[doi:10.3969/ j. issn.1673-629X.2019.03.034]
点击复制

基于遗传算法的机场特种车辆调度应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年03期
页码:
164-168
栏目:
应用开发研究
出版日期:
2019-03-10

文章信息/Info

Title:
Research on Airport Special Vehicle Scheduling Based on Genetic Algorithm
文章编号:
1673-629X(2019)03-0164-05
作者:
杨珏
中国民航大学 基础实验中心,天津 300300
Author(s):
YANG Jue
Basic Experiment Centre,Civil Aviation University of China,Tianjin 300300,China
关键词:
车辆路径问题遗传算法时间窗机场特种车辆
Keywords:
vehicle routing problemgenetic algorithmtime windowairport special vehicle
分类号:
TP391. 9
DOI:
10.3969/ j. issn.1673-629X.2019.03.034
摘要:
航班在机场过站期间需要特种车辆提供燃油加注、配餐、装卸行李货物、清洁、加注清水等一系列地面保障服务。特种车辆的优化调度对提升机场地面保障服务水平和提高资源利用率至关重要。 目前机场普遍采用基于人工的单车单航班服务的特种车辆调度方式,成本高效率低,也是造成航班延误的重要因素之一。 针对机场地面燃油加注保障服务的车辆调度问题,根据燃油加注服务业务建立了航班保障服务无延误且调度总成本最低的带时间窗约束的车辆路径问题模型。 利用基于不同启发式算法的遗传算法对模型进行求解,以国内某机场实际航班数据进行了仿真实验,通过对不同算法的实验结果进行分析,找到了最佳解决算法并验证了该模型的合理性和有效性。 该方法也适用于为航班提供配餐和加注清水地面保障服务的特种车辆调度。
Abstract:
During the flight at the airport station,a series of ground support services such as fuel injection,feeding,loading and unloadingof luggage,cleaning,adding water are required by special vehicles. The optimal scheduling of airport special vehicles is very important toimprove the service level of airport ground support and improve the utilization of resources. At present,the special vehicle schedulingbased on artificial single flight services is widely adopted in the airport,with high cost and low efficiency,which is also one of the important factors causing flight delay. Aiming at the problem of vehicle scheduling for airport ground fuel injection support service, theVRPTW model,which has the lowest total cost of flight support service and scheduling,is established based on fuel injection service. Thegenetic algorithm based on different heuristic algorithms is used to solve the model. Taking an actual flight data of a domestic airport as an example,the simulation is carried out by analyzing the experimental results of different algorithms. The best solution is found and the rationality and validity of the model are verified. The method is also suitable for the special vehicle scheduling of other ground support services such as feeding and adding water

相似文献/References:

[1]冯智明,苏一丹,覃华,等.基于遗传算法的聚类与协同过滤组合推荐算法[J].计算机技术与发展,2014,24(01):35.
 FENG Zhi-ming,SU Yi-dan,QIN Hua,et al.Recommendation Algorithm of Combining Clustering with Collaborative Filtering Based on Genetic Algorithm[J].,2014,24(03):35.
[2]余晓光 严洪森 殷乾坤.基于Flexsim的车间调度优化[J].计算机技术与发展,2010,(03):44.
 YU Xiao-guang,YAN Hong-sen,YIN Qian-kun.Workshops Scheduling Optimization Based on Flexsim Simulation[J].,2010,(03):44.
[3]贺计文 宋承祥 刘弘.基于遗传算法的八数码问题的设计及实现[J].计算机技术与发展,2010,(03):105.
 HE Ji-wen,SONG Cheng-xiang,LIU Hong.Design and Implementation of Eight Puzzle Problem Based on Genetic Algorithms[J].,2010,(03):105.
[4]沈珏萍 庄亚明.基于Agent的二级供应链企业自动谈判研究[J].计算机技术与发展,2010,(03):121.
 SHEN Jue-ping,ZHUANG Ya-ming.A Research for Company Automatic Negotiation in Secondary Supply Chain Based on Agent[J].,2010,(03):121.
[5]张磊 王晓军.基于遗传算法的业务流程测试[J].计算机技术与发展,2010,(03):155.
 ZHANG Lei,WANG Xiao-jun.Test of Business Process Based on Genetic Algorithm[J].,2010,(03):155.
[6]曹道友 程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44.
 CAO Dao-you,CHENG Jia-xing.A Genetic Algorithm Based on Modified Selection Operator and Crossover Operator[J].,2010,(03):44.
[7]范维博 周俊 许正良.应用遗传算法求解第一类装配线平衡问题[J].计算机技术与发展,2010,(02):194.
 FAN Wei-bo,ZHOU Jun,XU Zheng-liang.Appication of Genetic Algorithm to Assembly Line Balancing[J].,2010,(03):194.
[8]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(03):9.
[9]余晓光 严洪森.基于禁忌搜索遗传混合算法的装配线平衡[J].计算机技术与发展,2010,(05):5.
 YU Xiao-guang,YAN Hong-sen.Assembly Line Balancing Based on Tabu Search and Genetic Hybrid Algorithm[J].,2010,(03):5.
[10]黄永聪 张旭[] 吴义纯 吴琦 程家兴.改进的径向基函数网络的研究及应用[J].计算机技术与发展,2010,(05):158.
 HUANG Yong-cong,ZHANG Xu,WU Yi-chun,et al.Research and Application of Improved Genetic Algorithm-Based RBFANN[J].,2010,(03):158.
[11]邓伟林 胡桂武.一种求解离散优化问题的粒子群算法[J].计算机技术与发展,2012,(05):116.
 DENG Wei-lin,HU Gui-wu.A Particle Swarm Algorithm for Discrete Optimization Problem[J].,2012,(03):116.

更新日期/Last Update: 2019-03-10