[1]宋丽,张震雷,杨新凯.一种基于云模型的特征选择参数优化研究[J].计算机技术与发展,2019,29(03):93-96.[doi:10.3969/ j. issn.1673-629X.2019.03.020]
 SONG Li,ZHANG Zhen-lei,YANG Xin-kai.Research on Optimization of Text Feature Selection Parameters Based on Cloud Model[J].,2019,29(03):93-96.[doi:10.3969/ j. issn.1673-629X.2019.03.020]
点击复制

一种基于云模型的特征选择参数优化研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年03期
页码:
93-96
栏目:
智能、算法、系统工程
出版日期:
2019-03-10

文章信息/Info

Title:
Research on Optimization of Text Feature Selection Parameters Based on Cloud Model
文章编号:
1673-629X(2019)03-0093-04
作者:
宋丽张震雷杨新凯
上海师范大学 信息与机电工程学院,上海 200234
Author(s):
SONG LiZHANG Zhen-leiYANG Xin-kai
School of Information and Electromechanical Engineering,Shanghai Normal University,Shanghai 200234,China
关键词:
特征选择参数优化粒子群云模型
Keywords:
feature selectionparameter optimizationparticle swarmcloud model
分类号:
TP391
DOI:
10.3969/ j. issn.1673-629X.2019.03.020
摘要:
常用特征选择方法面临着特征子集空间大小难以确定的问题,取不同的 k 值,它们的分类效果是相差很大的。 粒子群优化算法存在收敛快、获得的是局部最优值而不是全局最优值的问题。 针对上述问题,结合云模型的理论知识,提出一种基于云模型的特征选择方法。 该算法的适应度函数是通过精确率这一评价指标计算的,将权重分为三个类别来动态确定惯性权重。 采用模糊期望交叉熵对原始的特征子集空间进行预选,将预选后的特征子集作为原始特征空间采用改进的特征选择方法,根据模糊期望交叉熵的大小来初始化粒子的种群数及采用迭代变化的阈值作为控制算法的结束条件。实验结果证明了该方法的有效性和可行性。
Abstract:
Common feature selection methods are faced with the problem that the size of feature subset space is difficult to determine. Taking different k values,their classification effects are quite different. PSO algorithm has the problem of fast convergence and obtaining the local optimal value instead of the global optimal value. To solve the above problems,in combination of the theoretical knowledge of cloud models,we propose a feature selection method based on cloud model. The fitness function is calculated by the accuracy rate evaluation index. The weight is divided into three categories to dynamically determine the inertia weight. In this paper,the original feature subset space is preselected using the fuzzy expectation cross entropy,and the pre-selected feature subset is used as the original feature space to adopt an improved feature selection method. According to the size of the fuzzy expected cross entropy,the population of particles is initialized. The iteratively changing threshold serves as an end condition for the control algorithm. The experiment shows that the proposed method is feasible and effective.

相似文献/References:

[1]刘利 何先平 袁文亮.股票趋势预测中Wrapper方法的研究与应用[J].计算机技术与发展,2010,(01):209.
 LIU Li,HE Xian-ping,YUAN Wen-liang.Research and Application of Wrapper Approach to Stock Trend Prediction[J].,2010,(03):209.
[2]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(03):21.
[3]张家柏 王小玲.基于聚类和二进制PSO的特征选择[J].计算机技术与发展,2010,(06):25.
 ZHANG Jia-bai,WANG Xiao-ling.A Novel Algorithm Based on K-Means Clustering and Binary Particle Swarm Optimization[J].,2010,(03):25.
[4]冯甲策 叶明 王惠文.基于Gram—Schmidt过程的支持向量机降维方法[J].计算机技术与发展,2009,(11):7.
 FENG Jia-ce,YE Ming,WANG Hui-wen.Dimension Reduction Method of Support Vector Machine Based on Gram- Schmidt Process[J].,2009,(03):7.
[5]林伟 柳荣其 徐熙.邮件过滤中一种改进的特征选择方法研究[J].计算机技术与发展,2009,(01):84.
 LIN Wei,LIU Rong-qi,XU Xi.Improvement of Feature Selection Algorithm in Spam Filtering[J].,2009,(03):84.
[6]刘毅 张月琳.基于Agent的邮件过滤与个性化分类系统设计[J].计算机技术与发展,2009,(02):66.
 LIU Yi,ZHANG Yue-lin.Design of a Mail Filter and Personalized Classification System Based on Agent[J].,2009,(03):66.
[7]陈素萍 谢丽聪.一种文本特征选择方法的研究[J].计算机技术与发展,2009,(02):112.
 CHEN Su-ping,XIE Li-cong.Research on Document Feature Selection[J].,2009,(03):112.
[8]段震 王倩倩 张燕平 张铃.覆盖算法下文本分类特征选择的研究[J].计算机技术与发展,2008,(11):29.
 DUAN Zhen,WANG Qian-qian,ZHANG Yan-ping,et al.Study on Feature Selection of Text Classification in Cross Cover Algorithm[J].,2008,(03):29.
[9]王希雷.基于Rough集理论的车牌汉字特征提取[J].计算机技术与发展,2007,(06):26.
 WANG Xi-lei.Car Plate Chinese Character Feature Extraction Based on Rough Set Theory[J].,2007,(03):26.
[10]董梅 胡学钢.基于多特征选择的中文文本分类[J].计算机技术与发展,2007,(07):117.
 DONG Mei,HU Xue-gang.Text Categorization Based on Multiple Features Selection[J].,2007,(03):117.

更新日期/Last Update: 2019-03-10