[1]余相,陈亮,胡亚兰,等.融合“S冶型相似度和关联度的协同过滤算法[J].计算机技术与发展,2019,29(03):35-40.[doi:10.3969/ j. issn.1673-629X.2019.03.007]
 YU Xiang,CHEN Liang,HU Ya-lan,et al.Collaborative Filtering Algorithm Combining “S” Similarity and Relation[J].,2019,29(03):35-40.[doi:10.3969/ j. issn.1673-629X.2019.03.007]
点击复制

融合“S冶型相似度和关联度的协同过滤算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年03期
页码:
35-40
栏目:
智能、算法、系统工程
出版日期:
2019-03-10

文章信息/Info

Title:
Collaborative Filtering Algorithm Combining “S” Similarity and Relation
文章编号:
1673-629X(2019)03-0035-06
作者:
余相陈亮胡亚兰王丹
东华大学 信息科学与技术学院,上海 201620
Author(s):
YU XiangCHEN LiangHU Ya-lanWANG Dan
School of Information Science and Technology,Donghua University,Shanghai 201620,China
关键词:
协同过滤相似度关联度稀疏性
Keywords:
collaborative filteringsimilarityrelationsparsity
分类号:
TP311.1
DOI:
10.3969/ j. issn.1673-629X.2019.03.007
摘要:
协同过滤推荐系统是应用最广泛的推荐算法之一,但是其面临严重的稀疏性问题和扩展性问题。 针对稀疏的评分矩阵难以准确计算相似度的问题,从推荐算法的流程出发,分离候选集生成和评分预测。 针对候选集中存在大量弱或不相关的项目和用户感兴趣比例较低的问题,引入关联度,使用关联矩阵生成候选集;评分预测阶段分析相似度对推荐效果的影响,总结现有相似度的不足,提出一种细粒度划分的“S冶型相似度来表述理想增长曲线,并在算法流程中融合候选集生成和评分预测。 实验结果表明,减小候选集规模为原来的 1/3,避免了评分时对无效项目的计算,算法层面上提高了可扩展性,改进的“S冶型相似度在推荐准确率上较之前提高了 4%,缓解了稀疏性对推荐效果的影响。
Abstract:
Collaborative filtering recommendation system is one of the most widely used recommendation algorithms,but it faces serious sparseness and scalability. To solve the problem that the sparse scoring matrix is difficult to accurately calculate the similarity,the candidate set generation and scoring prediction are separated from the flow of the recommendation algorithm. Aiming at the problem that there are a large number of weak or irrelevant items and low proportion of users’ interest in the candidate set,the correlation degree is introduced and the candidate set is generated by using the correlation matrix. In the prediction stage of scoring,analysis of the influence of similarity on recommendation effect and summarization of the existing shortcomings of similarity,we propose a fine-grained “S” typesimilarity to express the ideal growth curve. The candidate set generation and scoring prediction are fused in the algorithm. The experi-ment shows that the size of the candidate set is reduced by 1/3,which avoids the calculation of invalid items when scoring,and the scal-ability is improved at the algorithm level. The improved “S" type similarity is higher than the former in the recommendation accuracyrate. Increased by 4%,eased the influence of sparsity on the recommendation effect.

相似文献/References:

[1]曹道友 程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44.
 CAO Dao-you,CHENG Jia-xing.A Genetic Algorithm Based on Modified Selection Operator and Crossover Operator[J].,2010,(03):44.
[2]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].,2010,(03):67.
[3]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(03):69.
[4]王春雪 王继成 郑吉.谱聚类在图像检索中的应用[J].计算机技术与发展,2009,(01):207.
 WANG Chun-xue,WANG Ji-cheng,ZHENG Ji.Application of Spectral Clustering in Image Retrieval[J].,2009,(03):207.
[5]林智超 朱国进.一种基于FCA的概念相似度算法[J].计算机技术与发展,2008,(09):112.
 LIN Zhi-ehao,ZHU Guo-jin.A Concept Similarity Algorithm Based on FCA[J].,2008,(03):112.
[6]乌庆敏 杨思春.基于潜在语义分析的智能答疑系统研究与实现[J].计算机技术与发展,2008,(09):251.
 WU Qing-min,YANG Si-chun.Research on Intelligent Question Answering System Based on Latent Semantic Analysis[J].,2008,(03):251.
[7]盛步云 万哲 丁毓峰.BPMS中一种基于流程异常库的异常处理方法[J].计算机技术与发展,2008,(12):84.
 SHENG Bu-yun,WAN Zhe,DING Yu-feng.A Method Based on Process Abnormity Set for Resolving Abnormity in BPMS[J].,2008,(03):84.
[8]姜雅倩 王直杰 张珏.基于供求关系及协同过滤技术的推荐模型研究[J].计算机技术与发展,2007,(06):18.
 JIANG Ya-qian,WANG Zhi-jie,ZHANG Jue.Research on Recommendation Model Based on Supply and Demand Relation and Collaborative Filtering[J].,2007,(03):18.
[9]程舒通.Web点击流的频繁模式聚类算法[J].计算机技术与发展,2007,(09):18.
 CHENG Shu-tong.Clustering Algorithm of Web Click Flow Frequency Pattern[J].,2007,(03):18.
[10]闫蓉 张蕾.一种新的汉语词义消歧方法[J].计算机技术与发展,2006,(03):22.
 YAN Rong,ZHANG Lei.New Chinese Word Sense Disambiguation Method[J].,2006,(03):22.
[11]李振博,徐桂琼,査九. 基于用户谱聚类的协同过滤推荐算法[J].计算机技术与发展,2014,24(09):59.
 LI Zhen-bo,XU Gui-qiong,ZHA Jiu. A Collaborative Filtering Recommendation Algorithm Based on User Spectral Clustering[J].,2014,24(03):59.
[12]王全民,王莉,曹建奇. 基于评论挖掘的改进的协同过滤推荐算法[J].计算机技术与发展,2015,25(10):24.
 WANG Quan-min,WANG Li,CAO Jian-qi. Improved Collaborative Filtering Recommendation Algorithm Based on Comments Mining[J].,2015,25(03):24.
[13]樊艳清,梁宏宇,纪佳琪.协同过滤算法中相似度计算问题研究[J].计算机技术与发展,2020,30(08):91.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 015]
 FAN Yan-qing,LIANG Hong-yu,JI Jia-qi.Research on Similarity Calculation in Collaborative Filtering Algorithm[J].,2020,30(03):91.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 015]
[14]吴锦昆,单剑锋.基于改进型相似度的协同过滤算法的研究[J].计算机技术与发展,2022,32(04):39.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 007]
 WU Jin-kun,SHAN Jian-feng.Research on Collaborative Filtering Algorithm Based on Improved Similarity[J].,2022,32(03):39.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 007]
[15]薛 亮,徐 慧,冯尊磊,等.一种改进的协同过滤的商品推荐方法[J].计算机技术与发展,2022,32(07):201.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 035]
 XUE Liang,XU Hui,FENG Zun-Lei,et al.An Improved Co-filtered Goods Recommendation Method[J].,2022,32(03):201.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 035]
[16]贾俊康,李玲娟.结合贡献度与时间权重的协同过滤推荐算法[J].计算机技术与发展,2023,33(03):167.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 025]
 JIA Jun-kang,LI Ling-juan.Collaborative Filtering Recommendation Algorithm Combining Contribution and Time Weight[J].,2023,33(03):167.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 025]

更新日期/Last Update: 2019-03-10