[1]周文娟,赵礼峰.基于ACO-PSO自适应的划分聚类算法[J].计算机技术与发展,2019,29(02):90-95.[doi:10.3969/j.issn.1673-629X.2019.02.019]
 ZHOU Wenjuan,ZHAO Lifeng.A Segmentation Clustering Algorithm Based on ACO-PSO Adaptability[J].,2019,29(02):90-95.[doi:10.3969/j.issn.1673-629X.2019.02.019]
点击复制

基于ACO-PSO自适应的划分聚类算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年02期
页码:
90-95
栏目:
智能、算法、系统工程
出版日期:
2019-02-10

文章信息/Info

Title:
A Segmentation Clustering Algorithm Based on ACO-PSO Adaptability
文章编号:
1673-629X(2019)02-0090-06
作者:
周文娟赵礼峰
南京邮电大学 理学院,江苏 南京 210023
Author(s):
ZHOU Wen-juanZHAO Li-feng
School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
K-means自适应个体轮廓系数ACO-PSO鲁棒性
Keywords:
K-Meansadaptabilityindividual contour coefficientACO-PSOrobustness
分类号:
TP181
DOI:
10.3969/j.issn.1673-629X.2019.02.019
摘要:
针对经典划分算法聚类数 K 先验未知及初始聚类中心随机选取,导致陷入局部最优的问题,提出一种基于 ACO-PSO 自适应的划分聚类算法。首先根据聚类算法类内相似度最大差异度最小和类间相似度最小差异度最大的基本原则,将个体轮廓系数作为最佳聚类数的检验函数,得到聚类算法的自适应 K 值;其次利用群智能搜索方法思想,有效结合了粒子群算法和蚁群算法的优点,先利用具有全局性和快速性的粒子群算法获得初始信息素分布,再利用具有正反馈性和并行性的蚁群算法得到精确解。最后在多个 UCI 数据集上的仿真结果表明,该算法不仅求解能力优于传统聚类算法及基于个体轮廓系数优化的初始聚类中心算法,而且聚类时间效率大大提高,应用于大数据收敛速度更加明显。
Abstract:
Aiming at the problem that the prior unknown clustering number K and the random selection of the initial clustering center for the classical partitioning algorithm lead to local optimum,we propose a partitioning clustering algorithm based on ACO-PSO adaptability.Firstly,according to the basic principle of the minimum difference and maximum similarity within the class and the maximum differenceand minimum similarity between classes,the adaptive K value of the clustering algorithm is obtained by using the individual contour coef-ficient as the test function of the best clustering number. Secondly,in combination with advantages of particle swarm optimization algo-rithm and ant colony algorithm inspired by swarm intelligence search,the initial pheromone distribution is obtained by particle swarm op-timization algorithm with wholeness and rapidity,and then the exact solution is got by ant colony algorithm with positive feedback andparallelism. Finally,the simulation on multiple UCI data sets shows that the proposed algorithm is not only superior to the traditional clustering and initial clustering center algorithm based on individual contour coefficient optimization,but also shortens clustering time greatly, which is more obvious in convergence speed when applied to big data.

相似文献/References:

[1]宋淑娜 李金霞 胡学坤 高尚.一种自适应模糊阈值区间的图像分割方法[J].计算机技术与发展,2010,(05):121.
 SONG Shu-na,LI Jin-xia,HU Xue-kun,et al.A Method of Adaptive Fuzzy Threshold Region for Image Segmentation[J].,2010,(02):121.
[2]范新 沈闻 丁泉勋 沈洁.基于正例和未标文档的半监督分类研究[J].计算机技术与发展,2009,(06):58.
 FAN Xin,SHEN Wen,DING Quan-xun,et al.Research on Semi- Supervised Classification Based on Positive and Unlabeled Text Document[J].,2009,(02):58.
[3]董明忠.一种UWB Ad Hoc网络的自适应MAC协议算法与仿真[J].计算机技术与发展,2009,(08):92.
 DONG Ming-zhong.An Adaptive MAC Protocol Algorithm and Simulation Based on UWB Ad Hoc Networks[J].,2009,(02):92.
[4]王树梅 王志成 蔡健.一种基于灰度形态学的小波域边缘检测算法[J].计算机技术与发展,2009,(01):32.
 WANG Shu-mei,WANG Zhi-cheng,CAI Jian.A Novel Edge- Detection Algorithm in Wavelet Gray - Scale Morphology[J].,2009,(02):32.
[5]陈成 杨晨晖 聂文 龚元浩.基于浮游植物图像的模糊算子边缘检测算法[J].计算机技术与发展,2009,(03):22.
 CHEN Cheng,YANG Chen-hui,NIE Wen,et al.Based on Marine Phytoplankton Cells Images of Fuzzy Operator Edge Detection Algorithm[J].,2009,(02):22.
[6]邓秀勤 熊勇.用于图像处理的加权中值滤波算法[J].计算机技术与发展,2009,(03):46.
 DENG Xiu-qin,XIONG Yong.Weighted Median Filter Algorithm for Image Processing[J].,2009,(02):46.
[7]周俊明 胡小龙 彭建伟.功塞监控图形系统中自适应着色处理[J].计算机技术与发展,2008,(04):245.
 ZHOU Jun-ming,HU Xiao-long,PENG Jian-wei.Power-Aware Adaptive Shading for Graphics System[J].,2008,(02):245.
[8]赵纪涛 马莉 王现君 尚光龙.一种自适应的模糊关联规则挖掘算法[J].计算机技术与发展,2008,(05):64.
 ZHAO Ji- tao,MA Li,WANG Xian-jun,et al.An Adaptive Algorithm for Mining Fuzzy Association Rules[J].,2008,(02):64.
[9]陈珂 徐科[].全自动酶免工作站计算机控制系统设计[J].计算机技术与发展,2008,(06):160.
 CHEN Ke,XU Ke.Design of Computer Control System for Automated ELISA Workstation[J].,2008,(02):160.
[10]鲁群 周爱武.双变异算子遗传算法的应用[J].计算机技术与发展,2008,(07):42.
 LU Qun,ZHOU Ai-wu.Application of Genetic Algorithm Based on Dual Mutation[J].,2008,(02):42.

更新日期/Last Update: 2019-02-10