[1]朱越,李振伟,杨晓利,等.基于视觉的静态手势识别系统[J].计算机技术与发展,2019,29(02):69-72.[doi:10.3969/j.issn.1673-629X.2019.02.014]
 ZHU Yue,LI Zhenwei,YANG Xiaoli,et al.Static Gesture Recognition System Based on Vision[J].,2019,29(02):69-72.[doi:10.3969/j.issn.1673-629X.2019.02.014]
点击复制

基于视觉的静态手势识别系统()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年02期
页码:
69-72
栏目:
智能、算法、系统工程
出版日期:
2019-02-10

文章信息/Info

Title:
Static Gesture Recognition System Based on Vision
文章编号:
1673-629X(2019)02-0069-04
作者:
朱越李振伟杨晓利胡志刚
河南科技大学,河南 洛阳 471023
Author(s):
ZHU YueLI Zhen-weiYANG Xiao-liHU Zhi-gang
Henan University of Science and Technology,Luoyang 471023,China
关键词:
手势轮廓手势识别像素遍历图像处理Matlab
Keywords:
gesture contourgesture recognitionpixel traversalimage processingMatlab
分类号:
TP302
DOI:
10.3969/j.issn.1673-629X.2019.02.014
摘要:
为了丰富手势识别方法的多样性,提高手势识别的正确率,提出了一种基于手势轮廓像素变化的手势识别方法。在 Matlab 环境下,设计并开发了一个基于视觉的静态手势识别系统。系统主要由两部分组成:手势分割与手势识别。该系统通过摄像头实时采集手势图像,根据 HSV 颜色空间上的聚簇特性,通过结合 RGB 和 HSV 双颜色空间的手势分割方法得到二值化图像,再对图像进行平滑滤波、形态学处理等处理后得到矩形手势区域图像。手势轮廓可以很好地表征手势图像的局部特征,文中在获取手势轮廓的基础上根据手势区域的像素变化进行手势识别。实验结果表明,该系统能够对规定的四种常用静态手势进行识别,系统鲁棒性很好,平均识别率达到了 90%,总体识别有效率达到了 85.9%,有较好的识别效果。
Abstract:
In order to enrich the diversity of gesture recognition method and improve the accuracy of gesture recognition,we propose a gesture recognition method based on the change of gesture contour pixel. In the Matlab environment,we design and develop a visual static gesture recognition system which consists of two parts:gesture segmentation and gesture recognition. This system collects the gesture images in real time through the camera. According to the clustering characteristics of HSV color space,the binary image is obtained by combining the gesture segmentation method of RGB and HSV dual-color space,and then the image is processed by smoothing and morphological processing. The gesture contour may well characterize the local feature of the gesture image,which is signed in response to the pixel change of the gesture region based on the acquired gesture contour. The experiment shows that the system can identify four commonly used static gestures with strong robustness and great recognition effect. The average recognition rate is up to 90% and the overall recognition rate is 85.9%.

相似文献/References:

[1]蔡萍 沈志涛 华庆一.以用户为中心的笔式Easy Word编辑器的设计实现[J].计算机技术与发展,2009,(10):59.
 CAI Ping,SHEN Zhi-tao,HUA Qing-yi.Design and Implementation of an EasyWord Editor Pen - Based on User - Centered[J].,2009,(02):59.
[2]孙丽娟 张立材 郭彩龙.基于视觉的手势识别技术[J].计算机技术与发展,2008,(10):214.
 SUN Li-juan,ZHANG Li-cai,GUO Cai-long.Technologies of Hand Gesture Recognition Based on Vision[J].,2008,(02):214.
[3]刘婷婷 华庆一.整合概念设计与详细设计过程的笔式CAD系统研究[J].计算机技术与发展,2007,(06):67.
 LIU Ting-ting,HUA Qing-yi.Study on Pen- Input CAD System to Integrate Processes of Conceptual Design and Detailed Design[J].,2007,(02):67.
[4]陈晨,吴建国.基于WebRTC的残疾人鼠标研究与实现[J].计算机技术与发展,2013,(09):32.
 CHEN Chen,WU Jian-guo.Research and Implementation of Disabled Mouse Based on WebRTC[J].,2013,(02):32.
[5]杨雷坤[] [],李绪志[],王红飞[]. 基于手势识别技术的遥操作系统的设计与实现[J].计算机技术与发展,2015,25(09):1.
 YANG Lei-kun[] [],LI Xu-zhi[],WANG Hong-fei[]. Design and Implementation of Tele-operations System Based on Gesture Recognition Technology[J].,2015,25(02):1.
[6]张莹莹,郭 星.基于 Kinect 动态手势识别算法的研究与实现[J].计算机技术与发展,2017,27(12):11.
 ZHANG Ying-ying,GUO Xing.Research and Realization of Dynamical Gesture RecognitionAlgorithm Based on Kinect[J].,2017,27(02):11.
[7]杨红玲,宣士斌,莫愿斌.基于卷积神经网络的手势识别[J].计算机技术与发展,2018,28(07):11.[doi:10.3969/ j. issn.1673-629X.2018.07.003]
 YANG Hong-ling,XUAN Shi-bin,MO Yuan-bin.Hand Gesture Recognition Based on Convolutional Neural Network[J].,2018,28(02):11.[doi:10.3969/ j. issn.1673-629X.2018.07.003]
[8]王拥军,马维华.一种基于 CSI 相位差的手势识别方法[J].计算机技术与发展,2020,30(04):14.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 003]
 WANG Yong-jun,MA Wei-hua.A Gesture Recognition Method Based on CSI Phase Difference[J].,2020,30(02):14.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 003]
[9]林 玲,陈姚节,徐 新,等.轨迹特征融合双流模型的动态手势识别[J].计算机技术与发展,2020,30(12):34.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 006]
 LIN Ling,CHEN Yao-jie,XU Xin,et al.Dynamic Gesture Recognition Based on Trajectory Feature Recognition and Fusion Dual-flow Model[J].,2020,30(02):34.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 006]

更新日期/Last Update: 2019-02-10