[1]陈航,邱晓晖.基于卷积神经网络和池化算法的表情识别研究[J].计算机技术与发展,2019,29(01):61-65.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 013]
 CHEN Hang,QIU Xiao-hui.Research on Emotional Recognition Based on Convolution NeuralNetwork and Pooling Algorithm[J].,2019,29(01):61-65.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 013]
点击复制

基于卷积神经网络和池化算法的表情识别研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年01期
页码:
61-65
栏目:
智能、算法、系统工程
出版日期:
2019-01-10

文章信息/Info

Title:
Research on Emotional Recognition Based on Convolution NeuralNetwork and Pooling Algorithm
文章编号:
1673-629X(2019)01-0061-05
作者:
陈航 邱晓晖
南京邮电大学 通信与信息工程学院,江苏 南京,210003
Author(s):
CHEN HangQIU Xiao-hui
School of Telecommunications & Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
卷积神经网络 池化算法 人脸表情识别 深度学习 特征提取
Keywords:
convolutional neural networkpooling algorithmfacial expression recognitiondeep learningfeature extraction
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 01. 013
文献标志码:
A
摘要:
卷积神经网络(CNN)能够通过神经网络自主学习提取图像中的特征,并且具有局部响应、权值共享等优点,在人脸表情识别中获得了广泛的应用.池化算法是CNN的核心技术之一,通过对卷积层的特征进行聚合统计,池化算法可以减少CNN的特征维度,提高特征表征能力,但是目前常用的池化算法还存在提取特征单一,缺乏灵活性的情况.为了克服现有池化算法的不足,根据深度学习可采用BP算法自主调节参数的特性,提出一种改进的自适应池化算法.该算法在训练过程中能够根据损失函数,不断更新池化域的参数,最终使表情预测值和真实结果值之间的差值达到最小.基于CK+人脸表情数据库的实验结果表明,与现有池化算法相比,提出的自适应池化算法能有效提高表情识别准确率.
Abstract:
Convolution neural network (CNN) can extract the features of the image by neural network autonomy learning with the advantages of local response and weight sharing,and has been widely used in facial expression recognition. The pooling algorithm is one of the core technologies of CNN. By aggregating the features of the convolution layer,the pooling algorithm can reduce the feature dimension of the CNN and improve the capability of feature representation. However,the commonly used pooling algorithms also have the disadvantage of single extraction feature and lack of flexibility. For this,we propose a modified adaptive pooling algorithm based on the characteristics of depth self-tuning parameters which can be adjusted by BP algorithm. According to the loss function,updating the parameters of the pooled domain eventually minimizes the difference between the predictive value of the expression and the true result value. The experiment based on CK+ face expression database shows that compared with the existing pooling algorithm,the proposed adaptive poolingalgorithm can effectively improve the accuracy of facial expression recognition

相似文献/References:

[1]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(01):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[2]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].,2016,26(01):31.
[3]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(01):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[4]郭子琰,舒心,刘常燕,等.基于ReLU 函数的卷积神经网络的花卉识别算法[J].计算机技术与发展,2018,28(05):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
 GUO Ziyan,SHU Xin,LIU Changyan,et al.A Recognition Algorithm of Flower Based on Convolution Neural Network with ReLU Function[J].,2018,28(01):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
[5]缪宇杰,吴智钧,宫 婧.基于3D 卷积的视频错帧筛选方法[J].计算机技术与发展,2018,28(05):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
 MIAO Yu-jie,WU Zhi-jun,GONG Jing.A Wrong Temporal-order Frames Identification Method Based on 3D Convolution[J].,2018,28(01):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
[6]吴玉枝,吴志红,熊运余.基于卷积神经网络的小样本车辆检测与识别[J].计算机技术与发展,2018,28(06):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
 WU Yu-zhi,WU Zhi-hong,XIONG Yun-yu.Vehicle Detection and Recognition of a Few Samples Based on Convolutional Neural Network[J].,2018,28(01):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
[7]李相桥,李晨,田丽华,等.卷积神经网络并行训练的优化研究[J].计算机技术与发展,2018,28(08):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
 LI Xiang-qiao,LI Chen,TIAN Li-hua,et al.Research on Optimization of Parallel Training for Convolution Neural Network[J].,2018,28(01):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
[8]邓宗平,赵启军,陈虎. 基于深度学习的人脸姿态分类方法[J].计算机技术与发展,2016,26(07):11.
 DEND Zong-ping,ZHAO Qi-jun,CHEN Hu. Face Pose Classification Method Based on Deep Learning[J].,2016,26(01):11.
[9]河海大学 计算机与信息学院,江苏 南京 0098.卷积网络的无监督特征提取对人脸识别的研究[J].计算机技术与发展,2018,28(06):17.[doi:10.3969/ j. issn.1673-629X.2018.06.004]
 DU Bai-sheng.Research on Unsupervised Feature Extraction Based on Convolutional Neural Network for Face Recognition[J].,2018,28(01):17.[doi:10.3969/ j. issn.1673-629X.2018.06.004]
[10]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(01):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]

更新日期/Last Update: 2019-01-10