[1]余文艳,肖志刚,李虎.时间序列模型在卫星异常检测中的应用研究[J].计算机技术与发展,2018,28(12):122-126.[doi:10.3969/j. issn.1673-629X.2018.12.026]
 YU Wenyan,XIAO Zhigang,LI Hu.Application and Research of Time Series Model in SatelliteAnomaly Detection[J].,2018,28(12):122-126.[doi:10.3969/j. issn.1673-629X.2018.12.026]
点击复制

时间序列模型在卫星异常检测中的应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年12期
页码:
122-126
栏目:
应用开发研究
出版日期:
2018-12-10

文章信息/Info

Title:
Application and Research of Time Series Model in SatelliteAnomaly Detection
文章编号:
1673-629X(2018)12-0122-05
作者:
余文艳12肖志刚1李虎1
1. 中国科学院国家空间科学中心 卫星运控技术实验室,北京 100190;2. 中国科学院大学,北京 100049
Author(s):
YU Wen-yan12XIAO Zhi-gang1LI Hu1
1. Laboratories of Satellite Mission Operationof National Space Science Center,Beijing 100190,China;2. University of Chinese Academy of Sciences,Beijing 100049,China
关键词:
卫星遥测参数时间序列模型卫星异常检测ARMA 算法卫星故障预测
Keywords:
satellite telemetry datatime series modelsatellite anomaly detectionARMAsatellite fault prediction
分类号:
TP277
DOI:
10.3969/j. issn.1673-629X.2018.12.026
摘要:
随着国内航天事业的迅猛发展,在轨卫星数量不断增多。以中科院空间科学先导专项为例,自2015年12月暗物质粒子探测卫星发射以来,先后有实践十号返回式科学卫星、量子科学实验卫星以及硬X射线调制望远镜卫星成功发射,未来还会有中法天文卫星、太阳风-磁层相互作用全景成像卫星等一系列的卫星任务,而卫星异常检测是保证卫星正常在轨运行的基础。文中利用卫星遥测参数的时间特性,以暗物质粒子探测卫星和量子科学实验卫星在轨运行一年多的时间里所产生的卫星遥测数据为基础,结合中科院空间科学先导专项实际空间科学卫星运控任务背景,对卫星有效载荷的异常检测进行实验研究,提出了一种基于时间序列模型的卫星有效载荷异常检测方法,并利用自回归滑动平均(AMRA)算法进行实验验证,挖掘卫星历史遥测数据和历史异常信息的关系,得到了较好的验证结果,为空间科学卫星健康有效的在轨运行提供了一定的支撑和辅助决策作用。
Abstract:
With the rapid development of domestic space industry,the number of orbiting satellites has increased. Taking the CAS pilot project in space science as an example,since the launching of the dark matter particle detection satellite in December 2015,there have been successful launches of the 10-type returning scientific satellite,the quantum scientific experimental satellite and the hard X-ray modulation telescope satellite. In the future there will also be a astronomy satellite,solar wind-magnetic interaction panoramic imaging satellite and a series of satellite missions,and satellite anomaly detection is to ensure the normal satellite orbital operation of the foundation. Based on the time characteristics of satellite telemetry parameters and the satellite telemetry data generated by orbiting satellites for more than one year in the satellite,combining with the background of actual space science satellite operation and control,we study the anomaly detection of satellite payloads and put forward a time-series-based satellite payload anomaly detection method which is validated by an autoregressive moving average (AMRA) algorithm. The experimental results are satisfactory,which provides a sound and effective on-orbit operation for space science satellite support role.

相似文献/References:

[1]邱凯星,伍文燕,陈 卓.基于组合 LSTM 的股票价格预测方法[J].计算机技术与发展,2022,32(S1):73.[doi:10. 3969 / j. issn. 1673-629X. 2022. S1. 017]
 QIU Kai-xing,WU Wen-yan,CHEN Zhuo.Stock Price Prediction Method Based on Combined-LSTM[J].,2022,32(12):73.[doi:10. 3969 / j. issn. 1673-629X. 2022. S1. 017]

更新日期/Last Update: 2018-12-10