[1]丛洪杰,龚安,李华昱,等.基于用户兴趣和项目分类的协同过滤推荐算法[J].计算机技术与发展,2018,28(11):85-88.[doi:10.3969/ j. issn.1673-629X.2018.11.019]
 CONG Hong-jie,GONG An,LI Hua-yu,et al.A Collaborative Filtering Recommendation Algorithm Based on User Interest and Item Classification[J].,2018,28(11):85-88.[doi:10.3969/ j. issn.1673-629X.2018.11.019]
点击复制

基于用户兴趣和项目分类的协同过滤推荐算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年11期
页码:
85-88
栏目:
智能、算法、系统工程
出版日期:
2018-11-10

文章信息/Info

Title:
A Collaborative Filtering Recommendation Algorithm Based on User Interest and Item Classification
文章编号:
1673-629X(2018)11-0085-04
作者:
丛洪杰1龚安1李华昱1帅训波2
1. 中国石油大学(华东) 计算机与通信工程学院,山东 青岛 266580; 2. 中国石油勘探开发研究院 计算机应用技术研究所,北京 100083
Author(s):
CONG Hong-jie1GONG An1LI Hua-yu1SHUAI Xun-bo2
1.School of Computer &Communication Engineering,China University of Petroleum (East China),Qingdao 266580,China; 2.Institute of Computer Application Technology,China Petroleum Exploration and Development Research Institute,Beijing 100083,China
关键词:
协同过滤修正余弦相似性用户兴趣分布项目分类
Keywords:
collaborative filteringmodified cosine similarityuser interest distributionitem classification
分类号:
TP391
DOI:
10.3969/ j. issn.1673-629X.2018.11.019
文献标志码:
A
摘要:
随着用户产生的评分数据的稀疏性越来越高,传统的协同过滤算法在计算用户相似性和项目相似性的过程中暴露出弊端,导致推荐质量急剧下降。 针对用户评分矩阵数据稀疏性高、推荐精度低等问题,首先采用用户兴趣分布对评分矩阵预测填充,以降低数据的稀疏性,然后在寻找最近邻居的过程中,提出基于项目分类的修正余弦相似性的度量方法,利用用户评分在项目类别内的偏离程度来改进修正余弦相似性,以寻找更加准确的 K 近邻。 在 MovieLens 1m 数据集上进行了实验,结果表明,在用户评分数据稀疏性较高的情况下,该方法可以有效地改善传统的余弦相似性,修正余弦相似性度量方法所存在的问题,显著提高了推荐质量。
Abstract:
As the sparsity of the score data generated by users becomes higher and higher,the traditional collaborative filtering algorithm exposes defects in the calculation of user similarity and project similarity,leading to a sharp decline in recommendation quality. Aiming at the problems of high sparsity and low recommendation accuracy of user score matrix data,we firstly use the user interest distribution to predict and fill the score matrix,so as to reduce the sparsity of data. Secondly,we propose a measure method of modified cosine similarity based on item attribute classification in the process of finding nearest neighbors,and use the degree of deviation of user rating in the item attribute category for a more accurate K-nearest neighbor. The experiment is carried out in the MovieLens 1m datasets,which shows that in the case of high sparse of user score data,the proposed method can effectively improve the traditional cosine similarity,correct the problems existing in the cosine similarity measurement method,and remarkably improve the recommended quality.

相似文献/References:

[1]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].,2010,(11):67.
[2]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(11):69.
[3]姜雅倩 王直杰 张珏.基于供求关系及协同过滤技术的推荐模型研究[J].计算机技术与发展,2007,(06):18.
 JIANG Ya-qian,WANG Zhi-jie,ZHANG Jue.Research on Recommendation Model Based on Supply and Demand Relation and Collaborative Filtering[J].,2007,(11):18.
[4]游文 叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,(09):70.
 YOU Wen,YE Shui-sheng.A Survey of Collaborative Filtering Algorithm Applied in E- commerce Recommender System[J].,2006,(11):70.
[5]徐红 彭黎 郭艾寅 徐云剑.基于用户多兴趣的协同过滤策略改进研究[J].计算机技术与发展,2011,(04):73.
 XU Hong,PENG Li,GUO Ai-yin,et al.User-Based Collaborative Filtering Strategies More Interested in Improvement of Research[J].,2011,(11):73.
[6]杨东风 牛永洁.基于混合规则的图书推荐模型设计与研究[J].计算机技术与发展,2011,(07):210.
 YANG Dong-feng,NIU Yong-jie.Books Recommended Model Design and Research Based on Mixing Rules[J].,2011,(11):210.
[7]吴月萍 王娜 马良.基于蚁群算法的协同过滤推荐系统的研究[J].计算机技术与发展,2011,(10):73.
 WU Yue-ping,WANG Na,MA Liang.Research of Collaboration Filtering Recommendation System Based on Ant Algorithm[J].,2011,(11):73.
[8]李克潮,蓝冬梅.一种属性和评分的协同过滤混合推荐算法[J].计算机技术与发展,2013,(07):116.
 LI Ke-chao,LAN Dong-mei.A Collaborative Filtering Hybrid Recommendation Algorithm for Attribute and Rating[J].,2013,(11):116.
[9]范虎,花伟伟.协同过滤推荐算法的研究与改进[J].计算机技术与发展,2013,(09):66.
 FAN Hu[],HUA Wei-wei[].Research and Improvement of Collaborative Filtering Recommendation Algorithm[J].,2013,(11):66.
[10]李振博,徐桂琼,査九. 基于用户谱聚类的协同过滤推荐算法[J].计算机技术与发展,2014,24(09):59.
 LI Zhen-bo,XU Gui-qiong,ZHA Jiu. A Collaborative Filtering Recommendation Algorithm Based on User Spectral Clustering[J].,2014,24(11):59.

更新日期/Last Update: 2018-11-10