[1]李水泉,邓 泓.相对最小执行时间方差的云计算任务调度算法[J].计算机技术与发展,2018,28(07):34-37.[doi:10.3969/ j. issn.1673-629X.2018.07.008]
 LI Shui-quan,DENG Hong.Min-variance Tasks Scheduling Algorithm for Cloud Computing System[J].,2018,28(07):34-37.[doi:10.3969/ j. issn.1673-629X.2018.07.008]
点击复制

相对最小执行时间方差的云计算任务调度算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年07期
页码:
34-37
栏目:
智能、算法、系统工程
出版日期:
2018-07-10

文章信息/Info

Title:
Min-variance Tasks Scheduling Algorithm for Cloud Computing System
文章编号:
1673-629X(2018)07-0034-04
作者:
李水泉1  3 邓 泓2  3
1. 深圳大学 计算机与软件学院,广东 深圳 518060;
2. 江西农业大学 软件学院,江西 南昌 330045;
3. 江西省高等学校农业信息技术重点实验室,江西 南昌 330045
Author(s):
LI Shui-quan 1  3 DENG Hong 2  3
1. School of Computer Science &Software Engineering,Shenzhen University,Shenzhen 518060,China;
2. School of Software,Jiangxi Agricultural University,Nanchang 330045,China;
3. Key Laboratory of Agricultural Information Technology of Jiangxi College,Nanchang 330045,China
关键词:
云计算任务调度执行时间方差
Keywords:
cloud computingtask schedulingexecution timevariance
分类号:
TP301.6
DOI:
10.3969/ j. issn.1673-629X.2018.07.008
文献标志码:
A
摘要:
着越来越多的计算任务投入到云计算系统中,如何实现较好的任务调度和分配对于任务完成时间以及云计算系统的负载问题具有重要的作用。 为使云计算平台的任务调度有较好的负载均衡和较早的最早完成时间,提出相对最小执行时间方差的云计算调度算法 min-variance。 由于各计算资源执行完任务的执行时间方差能够在一定程度上反映负载均衡和最早完成时间的问题,因此算法利用任务在各个计算资源之间的位置不同能产生不同执行时间方差的事实,通过一定规则和次数的任务位置变换以达到相对最小执行时间方差,从而在负载均衡和最早完成时间上都达到较好的效果。在CloudSim 仿真平台上进行了实验,结果表明,与现有一些调度算法相比,min-variance 算法不仅具有较好的负载均衡,同时也有较早的最早完成时间。
Abstract:
As more and more computing tasks are put into the cloud computing system,how to achieve better task scheduling and allocation plays an important role for load balancing and earliest completion time in cloud computing system. In order to get better load balancing and earliest completion time in task scheduling of cloud computing platforms,we propose a task scheduling algorithm on cloud computing platforms with relative minimum variance of execution time,called min-variance. Because the variance of execution time of the execution tasks from each computing resource can reflect the load balancing and earliest completion time to a certain extent,this algorithm moves the tasks to other computing resources within a rule and a certain number of times to achieve relative minimum variance of execution time,based on the fact that it can produce different variances of execution time when the tasks move to other computing resources.The algorithm is experimented on the simulation platform CloudSim,which shows that the min-variance algorithm not only can get better load balancing,but also achieve the earliest completion time compared with some existing scheduling algorithms.

相似文献/References:

[1]王茜,朱志祥,史晨昱,等.应用于数据库安全保护的加解密引擎系统[J].计算机技术与发展,2014,24(01):143.
 WANG Qian[],ZHU Zhi-xiang[],SHI Chen-yu[],et al.Encryption and Decryption Engine System Applying to Database Security and Detection[J].,2014,24(07):143.
[2]陈丹伟 黄秀丽 任勋益.云计算及安全分析[J].计算机技术与发展,2010,(02):99.
 CHEN Dan-wei,HUANG Xiu-li,REN Xun-yi.Analysis of Cloud Computing and Cloud Security[J].,2010,(07):99.
[3]易侃 王汝传.一种基于SOA的网格任务调度框架[J].计算机技术与发展,2010,(04):155.
 YI Kan,WANG Ru-chuan.A Task Scheduling Framework Based on SOA in Grid Computing[J].,2010,(07):155.
[4]郭创 余谅.网格任务调度算法的研究[J].计算机技术与发展,2009,(06):5.
 GUO Chuang,YU Liang.Research on Algorithm for Tasks Scheduling in Grid[J].,2009,(07):5.
[5]张辉宜 赵海军 周秀丽.基于Pfair的分布式实时调度策略Linux下实现[J].计算机技术与发展,2008,(02):31.
 ZHANG Hui-yi,ZHAO Hai-jun,ZHOU Xiu-li.Based on Pfair Implementing Distributed Real- Time Scheduling in Linux Kernel[J].,2008,(07):31.
[6]樊晓香.任务调度问题机制设计[J].计算机技术与发展,2008,(07):119.
 FAN Xiao-xiang.Research of Task Scheduling in Mechanism Design[J].,2008,(07):119.
[7]赵健.基于GridSim的A-MM调度算法模拟[J].计算机技术与发展,2008,(10):96.
 ZHAO Jian.A- MM Algorithm Simulation Based on GridSim[J].,2008,(07):96.
[8]孙放 陈云芳 林杭锋.适用于富客户端的云计算模型[J].计算机技术与发展,2010,(08):96.
 SUN Fang,CHEN Yun-fang,LIN Hang-feng.Cloud Computing Model Applicable to Rich Client Applications[J].,2010,(07):96.
[9]韩咚 陈波.基于时间Petri网的多处理机的调度算法[J].计算机技术与发展,2007,(06):15.
 HAN Dong,CHEN Bo.Algorithm of Multiprocessor Scheduling Based on Time Petri Nets[J].,2007,(07):15.
[10]张云锋 李胜磊 王炳波 华庆一[] 郝克刚[].基于Web的网格入口软件研究与实现[J].计算机技术与发展,2007,(07):53.
 ZHANG Yun-feng,LI Sheng-lei,WANG Bing-bo,et al.Research and Implementation of Web- Based Grid Portal[J].,2007,(07):53.
[11]谭文安[][],查安民[],陈森博[]. 优化粒子群的云计算任务调度算法[J].计算机技术与发展,2016,26(07):6.
 TAN Wen-an[]],ZHA An-min[],CHEN Sen-bo[]. Task Scheduling Algorithm of Cloud Computing Based on Particle Swarm Optimization [J].,2016,26(07):6.
[12]查安民[],谭文安[][]. 融合粒子群与蚁群的云计算任务调度算法[J].计算机技术与发展,2016,26(08):24.
 ZHA An-min[],TAN Wen-an[][]. A Task Scheduling Algorithm of Cloud Computing Merging Particle Swarm Optimization and Ant Colony Optimization[J].,2016,26(07):24.
[13]张晓丽. 自适应CPSO算法在云计算任务调度中的应用[J].计算机技术与发展,2016,26(08):161.
 ZHANG Xiao-li. Application of Self-adaptive Chaos Particle Swarm Optimization in Task Scheduling for Cloud Computing[J].,2016,26(07):161.
[14]胡艳华[],唐新来[][]. 基于改进遗传算法的云计算任务调度算法[J].计算机技术与发展,2016,26(10):137.
 HU Yan-hua[],TANG Xin-lai[][]. A Task Scheduling Algorithm Based on Improved Genetic Algorithm in Cloud Computing Environment[J].,2016,26(07):137.
[15]朱丽玲,杨智应. 基于VOO方法的云计算平台多目标任务调度算法[J].计算机技术与发展,2017,27(01):11.
 ZHU Li-ling,YANG Zhi-ying. A Multi-objective Scheduling Algorithm of Many Tasks in Cloud Platforms Based on Method of VOO[J].,2017,27(07):11.
[16]李慧,雷丽晖. 云计算环境下基于马氏距离的任务调度策略研究[J].计算机技术与发展,2017,27(01):53.
 LI Hui,LEI Li-hui. Research on Task Scheduling Strategy in Cloud Computing Based on Mahalanobis Distance[J].,2017,27(07):53.
[17]刘春燕[],杨巍巍[]. 云计算基于遗传粒子群算法的多目标任务调度[J].计算机技术与发展,2017,27(02):56.
 LIU Chun-yan[],YANG Wei-wei[]. A Multi-objective Task Scheduling Based on Genetic and Particle Swarm Optimization Algorithm for Cloud Computing[J].,2017,27(07):56.
[18]秦军[],董倩倩[],郝天曙[]. 基于蚁群模拟退火的云任务调度算法改进[J].计算机技术与发展,2017,27(03):117.
 QIN Jun[],DONG Qian-qian[],HAO Tian-shu[]. Improvement of Algorithm for Cloud Task Scheduling Based on Ant Colony Optimization and Simulated Annealing[J].,2017,27(07):117.
[19]何长杰,白治江.云环境下基于改进蚁群算法的任务调度[J].计算机技术与发展,2018,28(12):13.[doi:10.3969/j.issn.1673-629X.2018.12.003]
 HE Changjie,BAI Zhijiang.Task Scheduling Based on Improved Ant Colony Algorithm in Cloud Environment[J].,2018,28(07):13.[doi:10.3969/j.issn.1673-629X.2018.12.003]
[20]王宏杰,徐胜超.基于改进遗传算法的云计算任务调度方法[J].计算机技术与发展,2024,34(02):40.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 006]
 WANG Hong-jie,XU Sheng-chao.Cloud Computing Task Scheduling Method Based on Improved Genetic Algorithm[J].,2024,34(07):40.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 006]

更新日期/Last Update: 2018-08-24