[1]王潜,张艳彬.基于双目视觉的货车尺寸测量[J].计算机技术与发展,2018,28(06):161-164.[doi:10.3969/ j. issn.1673-629X.2018.06.036]
 WANG Qian,ZHANG Yan-bin.Truck Dimensions Measurement Based on Binocular Vision[J].,2018,28(06):161-164.[doi:10.3969/ j. issn.1673-629X.2018.06.036]
点击复制

基于双目视觉的货车尺寸测量()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年06期
页码:
161-164
栏目:
应用开发研究
出版日期:
2018-06-10

文章信息/Info

Title:
Truck Dimensions Measurement Based on Binocular Vision
文章编号:
1673-629X(2018)06-0161-04
作者:
王潜张艳彬
南京邮电大学 通信与信息工程学院,江苏 南京 210003
Author(s):
WANG QianZHANG Yan-bin
School of Telecommunications &Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
双目视觉车型识别车厢提取尺寸测量智能交通
Keywords:
binocular visionvehicle identificationcarriage extractiondimension measurementintelligent traffic
分类号:
TP391
DOI:
10.3969/ j. issn.1673-629X.2018.06.036
文献标志码:
A
摘要:
针对货车尺寸的快速精确测量,提出了一种基于双目视觉的测量方法。 论述了测量系统的组成、双目测量的原理,并通过图像差值法检测车辆目标,在此基础上应用基于 HSV 颜色空间的图像分割方法提取车身。 设计了一个基于 Hu矩的支持向量机分类器对车型进行分类,对分类为载货汽车的对象通过霍夫变换检测提取矩形车厢。 最后确定边缘测量点,结合特征匹配技术实现立体匹配,并完成尺寸自动测量。 该方法与传统的激光雷达法和红外光幕法相比,具有安装结构简单,占用场地少,成本低,测量速度快的优点。 实验结果表明,该算法测量精度低于 3%,耗时低于 1. 5 s,实现了载货汽车类车辆长度尺寸及车厢尺寸测量的精确性和快速性。
Abstract:
We propose a measurement method based on binocular vision aiming at the rapid and accurate measurement of truck dimensional parameters. The composition of the measurement system and the principle of binocular measurement are discussed. The vehicle target is detected by image difference method and the image segmentation method based on HSV color space is used to extract the vehicle body.Then we design a support vector machine classifier based on Hu moments to classify vehicle types. The rectangular carriage of the vehicle is extracted by Hough transform if classified as a truck. Finally,the edge measurement points are determined,and the stereo matching is realized by feature matching technology,and the dimension automatic measurement is completed. The measurement method has the advantages of simple installation structure,low occupancy space,low cost and fast measurement speed compared with the traditional measurement of laser radar and infrared light curtain. Experiment shows that the measurement system error is less than 3% and its time consumption is less than 2 second. The truck body size measurement can be achieved with accuracy and little time consumption.

相似文献/References:

[1]王建文 王敏.基于双目立体视觉的鞋楦三维建模[J].计算机技术与发展,2009,(04):224.
 WANG Jian-wen,WANG Min.3D Reconstruction of Shoe- last Based on Binocular Stereo Vision[J].,2009,(06):224.
[2]于勇 张晖 林茂松.基于双目立体视觉三维重建系统的研究与设计[J].计算机技术与发展,2009,(06):127.
 YU Yong,ZHANG Hui,LIN Mao-song.Research and Design of the 3D Reconstruction System Based on Binocular Stereo Vision[J].,2009,(06):127.
[3]张明恒 王华莹 郭烈.基于改进K—Means算法的车辆识别方法[J].计算机技术与发展,2012,(05):53.
 ZHANG Ming-heng,WANG Hua-ying,GUO Lie.Method of Vehicle Detection Based on Improved K-Means Algorithm[J].,2012,(06):53.
[4]晁衍凯,徐昱琳,周勇飞,等.基于双目视觉的机器人目标定位与机械臂控制[J].计算机技术与发展,2013,(07):6.
 CHAO Yan-kai,XU Yu-lin,ZHOU Yong-fei,et al.Target Positioning and Mechanical Arm Control of Robot Based on Binocular Vision[J].,2013,(06):6.
[5]周勇飞,徐昱琳,吕晓梦,等.基于双目的三维点云数据的获取与预处理[J].计算机技术与发展,2014,24(03):22.
 ZHOU Yong-fei,XU Yu-lin,Lü Xiao-meng,et al.Three-dimensional Point Cloud Data Acquisition and Pre-processing Based on Binocular[J].,2014,24(06):22.
[6]汪昡紫,孙宪坤,高飞. 轨道表面图像处理算法研究[J].计算机技术与发展,2015,25(09):182.
 WANG Xuan-zi,SUN Xian-kun,GAO Fei. Research on Algorithm of Track Surface Image Processing[J].,2015,25(06):182.
[7]刘敦强,沈峘,夏瀚笙,等.一种基于深度残差网络的车型识别方法[J].计算机技术与发展,2018,28(05):42.[doi:10.3969/j.issn.1673-629X.2018.05.010]
 LIU Dun-qiang,SHEN Huan,XIA Han-sheng,et al.A Vehicle Model Recognition Algorithm Based on Deep Residual Network[J].,2018,28(06):42.[doi:10.3969/j.issn.1673-629X.2018.05.010]
[8]吴玉枝,吴志红,熊运余.基于卷积神经网络的小样本车辆检测与识别[J].计算机技术与发展,2018,28(06):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
 WU Yu-zhi,WU Zhi-hong,XIONG Yun-yu.Vehicle Detection and Recognition of a Few Samples Based on Convolutional Neural Network[J].,2018,28(06):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
[9]费东炜,孙 涵.基于深度哈希网络的车型识别方法[J].计算机技术与发展,2020,30(01):7.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 002]
 FEI Dong-wei,SUN Han.A Vehicle Recognition Algorithm Based on Deep Hashing Network[J].,2020,30(06):7.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 002]
[10]曹文伦,陈 蓓,宋 程,等.双目视觉风洞测量系统实现的关键技术研究[J].计算机技术与发展,2022,32(07):128.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 022]
 CAO Wen-lun,CHEN Bei*,SONG Cheng,et al.Key Issues Research in Realization of Binocular Vision Wind Tunnel Measurement System[J].,2022,32(06):128.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 022]

更新日期/Last Update: 2018-08-22