[1]张俊溪,米国际,王鑫,等.基于进化算法和模糊控制的机器人路径规划[J].计算机技术与发展,2018,28(06):49-52.[doi:10.3969/ j. issn.1673-629X.2018.06.011]
 ZHANG Jun-xi,MI Guo-ji,WANG Xin,et al.Research on Path Planning of Robot Based on Evolutionary Algorithm and Fuzzy Control Algorithm[J].,2018,28(06):49-52.[doi:10.3969/ j. issn.1673-629X.2018.06.011]
点击复制

基于进化算法和模糊控制的机器人路径规划()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年06期
页码:
49-52
栏目:
智能、算法、系统工程
出版日期:
2018-06-10

文章信息/Info

Title:
Research on Path Planning of Robot Based on Evolutionary Algorithm and Fuzzy Control Algorithm
文章编号:
1673-629X(2018)06-0049-04
作者:
张俊溪1 米国际1 王鑫1 蒋江红2
1. 西安航空学院 车辆工程学院,陕西 西安 710077;
2. 陕西师范大学 计算机科学学院,陕西 西安 710119
Author(s):
ZHANG Jun-xi 1 MI Guo-ji 1 WANG Xin 1 JIANG Jiang-hong 2
1. School of Vehicle Engineering,Xi’an Aeronautical University,Xi’an 710077,China;
2. School of Computer Science,Shaanxi Normal University,Xi’an 710119,China
关键词:
移动机器人路径规划遗传规划算法模糊控制算法蚁群算法
Keywords:
mobile robotpath planningGP algorithmfuzzy control algorithmant colony optimization
分类号:
TP24
DOI:
10.3969/ j. issn.1673-629X.2018.06.011
文献标志码:
A
摘要:
机器人局部路径规划是路径规划问题的典型应用,局部路径规划是在环境信息未知的情况下,依靠传感器采集环境信息。 提出一种进化算法和模糊控制算法相结合的智能路径规划策略,首先通过机器人上的图像传感器得到相应环境信息,然后采用遗传规划算法(GP)对移动机器人的环境信息进行识别和分类,得到全局最优解。 分类结果有助于区分障碍物和目标,进一步利用模糊推理将障碍物和目标的未知信息模糊化并建立模糊规则库,建立的模糊规则库大大缩小。最后,通过解模糊产生驱动命令,移动机器人在驱动命令指挥下选择最优路径到达指定地点。 仿真结果表明,提出的智能路径规划策略可以使移动机器人对未知环境信息的分类更加准确,识别更加高效。 通过将遗传规划分类算法与蚁群算法(ACO)的收敛特性进行比较,以及与蚁群算法和模糊控制方法的最优搜索路径相比较,结果表明提出的算法具有较高的运算效率和可靠性。
Abstract:
The local path planning of mobile robot is a typical application of path planning problem. Local path planning relies on sensors to acquire environment information when the environment information is unknown. In this paper,we propose an intelligent path planning strategy combined evolutionary algorithm and fuzzy control algorithm. The corresponding environmental information is obtained by the image sensor on the robot. Then the environmental information of the mobile robot is identified and classified by using the genetic pro-
gramming (GP). The global optimal solution can be avoided to distinguish obstacles and goals correctly. Fuzzy reasoning is used to blur the position and the target position information. The fuzzy rules are set up and the precise drive commands are generated by solving the fuzzy rules. The simulation shows that the path planning method proposed can realize the accurate identification and classification of the unknown environment. In comparison with the classification algorithm of GA and the ant colony optimization (ACO),and compared with the optimal search path by colony optimization and pure fuzzy control algorithm,the proposed method has high efficiency and reliability.

相似文献/References:

[1]熊力 方康玲 刘永祥.GPS导航系统在道路巡检中的应用研究[J].计算机技术与发展,2010,(06):246.
 XIONG Li,FANG Kang-ling,LIU Yong-xiang.Research of GPS Navigation System in Road Patrol Line[J].,2010,(06):246.
[2]胡佳 汪峥.工业机器人路径规划的双目标优化策略[J].计算机技术与发展,2009,(05):16.
 HU Jia,WANG Zheng.Bi- objective Optimization of Path Planning for Manipulators[J].,2009,(06):16.
[3]张荣松 包家汉.基于改进遗传算法的机器人路径规划[J].计算机技术与发展,2009,(07):20.
 ZHANG Rong-song,BAO Jia-han.Robot Path Planning Based on Modified Genetic Algorithm[J].,2009,(06):20.
[4]郑延斌 李新源 段德全.一种保持Agent团队队形的路径规划方法[J].计算机技术与发展,2009,(07):159.
 ZHENG Yan-bin,LI Xin-yuan,DUAN De-quan.A Path Planning Algorithm with Agent Team Formation Maintained[J].,2009,(06):159.
[5]王娜 马昕.基于细化算法的移动机器人拓扑地图创建[J].计算机技术与发展,2009,(10):11.
 WANG Na,MA Xin.Mobile Robot Topological Map Building Based on Thinning Algorithm[J].,2009,(06):11.
[6]刘雁菲 邵晓东 李申.基于Vega的虚拟漫游场景中的路径规划研究[J].计算机技术与发展,2008,(06):9.
 LIU Yan-fei,SHAO Xiao-dong,LI Shen.Path Planning Based on Vega of Navigation in Virtual Environment[J].,2008,(06):9.
[7]陈得宝 李庆 李群 李峥.基于内分泌思想的改进粒子群算法[J].计算机技术与发展,2008,(10):61.
 CHEN De-bao,LI Qing,LI Qun,et al.An Improved Particle Swarm Algorithm Based on Endocrine Idea[J].,2008,(06):61.
[8]于锐 曹介南 朱培栋.车辆运输路径规划问题研究[J].计算机技术与发展,2011,(01):5.
 YU Rui,CAO Jie-nan,ZHU Pei-dong.Research for Routing Planning of Vehicle Transportation[J].,2011,(06):5.
[9]吕凌 曾碧.基于评估和分工合作并行蚁群机器人路径规划[J].计算机技术与发展,2011,(09):10.
 Lü Ling,ZENG Bi.Path Planning for Robot Introduction Parallel Ant Colony Algorithm Based on Division of Labor and Assessment[J].,2011,(06):10.
[10]孙柏林 高珏 孔超[] 许华虎[].一种家居机器人路径规划方法的研究[J].计算机技术与发展,2012,(03):67.
 SUN Bai-lin,GAO Jue,KONG Chao,et al.Study on Path Planning of Indoor Robots[J].,2012,(06):67.
[11]范莉丽 王奇志.改进的生物激励神经网络的机器人路径规划[J].计算机技术与发展,2006,(04):19.
 FAN Li-li,WANG Qi-zhi.Robot Path Planning of Modified Biologically Inspired Neural Networks[J].,2006,(06):19.
[12]王肖青 王奇志.传统人工势场的改进[J].计算机技术与发展,2006,(04):96.
 WANG Xiao-qing,WANG Qi-zhi.An Evolutionary Method of Traditional Artificial Potential Field[J].,2006,(06):96.
[13]张璐 张国良 张维平 敬斌.基于粒子群三次样条优化的局部路径规划方法[J].计算机技术与发展,2012,(11):145.
 ZHANG Lu,ZHANG Guo-liang,ZHANG Wei-ping,et al.Local Path Planning Algorithm Based on Particle Swarm Optimization of Cubic Splines[J].,2012,(06):145.
[14]徐丁,朱擎飞,叶晓东.遗传算法在移动机器人路径规划中的应用[J].计算机技术与发展,2013,(11):112.
 XU Ding,ZHU Qing-fei,YE Xiao-dong.Application of Genetic Algorithm in Mobile Robot Path Planning[J].,2013,(06):112.
[15]李登峰,杨 曦.基于改进智能水滴算法的移动机器人路径规划[J].计算机技术与发展,2019,29(12):49.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 009]
 LI Deng-feng,YANG Xi.Path Planning of Mobile Robot Based on Improved Intelligent Water Drop Algorithm[J].,2019,29(06):49.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 009]

更新日期/Last Update: 2018-08-16