[1]成谢锋,姚鹏飞.基于双阈值的心音快速分段算法及其应用研究[J].计算机技术与发展,2018,28(05):140-143.[doi:10.3969/j.issn.1673-629X.2018.05.032]
 CHENG Xiefeng,YAO Pengfei.A Fast Heart Sound Segmentation Based on Double Threshold and Its Application[J].,2018,28(05):140-143.[doi:10.3969/j.issn.1673-629X.2018.05.032]
点击复制

基于双阈值的心音快速分段算法及其应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年05期
页码:
140-143
栏目:
应用开发研究
出版日期:
2018-05-10

文章信息/Info

Title:
A Fast Heart Sound Segmentation Based on Double Threshold and Its Application
文章编号:
1673-629X(2018)05-0140-04
作者:
成谢锋姚鹏飞
南京邮电大学 电子科学与工程学院,江苏 南京 210003
Author(s):
CHENG Xie-fengYAO Peng-fei
School of Electronic Science and Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
心音心音分段阈值函数自适应选择
Keywords:
heart soundheart segmentationthreshold functionadaptive selection
分类号:
TP301.6
DOI:
10.3969/j.issn.1673-629X.2018.05.032
文献标志码:
A
摘要:
为了准确识别出心音信号中的第一心音、收缩期、第二心音和舒张期,需要对心音信号进行分段处理。提出一种基于两次阈值函数选择的心音分段快速算法。第一次是对心音信号进行小波变换后,采用最优阈值实现小波去噪,该阈值函数的自适应选择既可消除背景噪声,也不会导致信号某些微弱特性的消失;第二次自适应阈值的选择是对心音信号进行分段的过程中,通过对阈值的选择,达到心音最优的分段结果。实验结果表明,该心音分段算法对正常心音的分段精度达到了96%,对非正常心音的分段精度超过了92%,从而证明了该算法的有效性。
Abstract:
In order to identify the first heart sound,systolic,second heart sound and diastolic of heart sound signal accurately,it is needed to segment heart sound.For this,we propose a fast algorithm for heart sound segmentation based on two adaptive threshold function selection.The first threshold selection is to complete the wavelet denoising by means of optimal threshold after the wavelet transform.The optimal threshold function can eliminate the background noise without causing the disappearance of some weak characteristics of the signal.The second threshold selection is through the selection of threshold in the segmentation of heart sound signal,the optimal segmentation result can be achieved.The experiments show that the segmentation accuracy of the heartbeat segmentation algorithm is 96% for the normal heart sound,and over 92% for the abnormal heart sound,which proves it is very useful.

相似文献/References:

[1]张会香 成谢锋.LabVIEW平台上的心音分析虚拟仪器设计[J].计算机技术与发展,2010,(11):217.
 ZHANG Hui-xiang,CHENG Xie-feng.Heart Sound Analysis Virtual Instrument Based on LabVIEW Platform[J].,2010,(05):217.
[2]成谢锋,张友迅.一种先心病快速筛选仪的设计与实现[J].计算机技术与发展,2020,30(02):148.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 029]
 CHENG Xie-feng,ZHANG You-xun.Design and Implementation of a Rapid Screening Instrument for Congenital Heart Disease[J].,2020,30(05):148.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 029]
[3]蒿敬波,阳广贤,肖湘江,等.基于 Transformer 模型的心音小波谱图识别[J].计算机技术与发展,2023,33(10):189.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 029]
 HAO Jing-bo,YANG Guang-xian,XIAO Xiang-jiang,et al.Recognition of Heart Sound Scalograms Based on Transformer Model[J].,2023,33(05):189.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 029]

更新日期/Last Update: 2018-07-06