[1]史国川,龚连友.基于系数复用和字典训练的图像超分辨率算法[J].计算机技术与发展,2018,28(03):114-117.[doi:10.3969/ j. issn.1673-629X.2018.03.024]
 SHI Guo-chuan,GONG Lian-you.An Image Super-resolution Reconstruction Algorithm Based on Coefficient Reuse and Dictionary Training[J].,2018,28(03):114-117.[doi:10.3969/ j. issn.1673-629X.2018.03.024]
点击复制

基于系数复用和字典训练的图像超分辨率算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年03期
页码:
114-117
栏目:
智能、算法、系统工程
出版日期:
2018-03-10

文章信息/Info

Title:
An Image Super-resolution Reconstruction Algorithm Based on Coefficient Reuse and Dictionary Training
文章编号:
1673-629X(2018)03-0114-04
作者:
史国川龚连友
陆军军官学院 计算中心,安徽 合肥 230031
Author(s):
SHI Guo-chuanGONG Lian-you
Computer Center,Army Officer Academy of PLA,Hefei 230031,China
关键词:
超分辨率重建稀疏表示奇异值分解字典训练正交匹配追踪
Keywords:
super-resolution reconstructionsparse representationK-SVDdictionary trainingorthogonal matching pursuit
分类号:
TP301.6
DOI:
10.3969/ j. issn.1673-629X.2018.03.024
文献标志码:
A
摘要:
在基于学习的图像超分辨率重建过程中,字典的选择和训练是其中的关键环节,但是传统的字典训练算法存在计算量大、训练速度慢等缺点,导致整个重建过程耗费时间长,重建图像在细节上表现较差,影响了其视觉效果与使用价值。 针对上述字典训练中存在的问题,提出了一种改进的基于系数复用和字典训练的图像超分辨率算法。 该算法对传统的 K-SVD算法中的字典训练阶段进行了改进,利用信号的稀疏表示原理,同时结合正交匹配追踪中的系数复用算法,较好地解决了字典训练速度慢、重建图像质量低等问题。 实验结果表明,与经典的双三次插值和改进前的 K-SVD 图像重建算法相比,该图像重建算法较好地复原了图像的高频细节信息,提高了重建图像质量,同时大幅度降低了字典训练时间。
Abstract:
In the reconstruction of super-resolution image based on learning,the selection and training of the dictionary is an important step.However,traditional dictionary training algorithms have many disadvantages,such as large amount of calculation,slow training speed and so on,leading to the long time-consuming of entire reconstruction process and the poor performance of detail for reconstructed image,which affect its visual effects and practical value. Aiming at the above problem in dictionary training,we propose an improved image super-resolution algorithm based on coefficient multiplexing and dictionary training. In this paper,we improve the dictionary training stage in the traditional K-SVD algorithm,and solve the problem of the slow training speed and the poor reconstructed image by means of the sparse representation of signal with the coefficient multiplexing algorithm in orthogonal matching pursuit. Experiments show that compared to the classical bicubic interpolation and the traditional K-SVD image super-resolution algorithm,the proposed algorithm can recover the high-frequency details better,improve the quality of the reconstructed image,and substantially reduce the training time of dictionary.

相似文献/References:

[1]王春霞 苏红旗 范郭亮.图像超分辨率重建技术综述[J].计算机技术与发展,2011,(05):124.
 WANG Chun-xia,SU Hong-qi,FAN Guo-liang.Overview on Super Resolution Image Reconstruction[J].,2011,(03):124.
[2]朱伟冬 胡剑凌.基于马氏距离的稀疏表示分类算法[J].计算机技术与发展,2011,(11):27.
 ZHU Wei-dong,HU Jian-ling.Sparse Representation Classification Algorithm Based on Mahalanobis Distance[J].,2011,(03):27.
[3]王韦刚 庄伟胤.基于NIOS Ⅱ的图像压缩感知[J].计算机技术与发展,2012,(04):12.
 WANG Wei-gang,ZHUANG Wei-yin.Compressed Sensing of Image Based on NIOS Ⅱ[J].,2012,(03):12.
[4]葛广重,杨敏.基于稀疏表示的单幅图像超分辨率重建[J].计算机技术与发展,2013,(09):113.
 GE Guang-zhong,YANG Min.Single Image Super-resolution Reconstruction Based on Sparse Representation[J].,2013,(03):113.
[5]赵海峰,于雪敏,邹际祥,等.基于L1范数主成分分析的颅脑图像恢复[J].计算机技术与发展,2014,24(01):231.
 ZHAO Hai-feng[],YU Xue-min[],ZOU Ji-xiang[],et al.Cerebral Image Recovery Based on L1-norm Principal Component Analysis[J].,2014,24(03):231.
[6]陈静,邱晓晖,孙娜. 基于二维Gabor小波与SPP算法的人脸识别研究[J].计算机技术与发展,2014,24(11):110.
 CHEN Jing,QIU Xiao-hui,SUN Na. Research on Face Recognition Based on 2 D Gabor Wavelet and SPP Algorithm[J].,2014,24(03):110.
[7]姚刚,杨敏. 稀疏子空间聚类的惩罚参数自调整交替方向法[J].计算机技术与发展,2014,24(11):131.
 YAO Gang,YANG Min. Alternating Direction Method of Self-adjusting Penalty Parameters of Sparse Subspace Clustering[J].,2014,24(03):131.
[8]徐静妹,李 雷.基于稀疏表示和支持向量机的人脸识别算法[J].计算机技术与发展,2018,28(02):59.[doi:10.3969/j.issn.1673-629X.2018.02.014]
 XU Jingmei,LI Lei.A Face Recognition Algorithm Based on Sparse Representation and Support Vector Machine[J].,2018,28(03):59.[doi:10.3969/j.issn.1673-629X.2018.02.014]
[9]钱阳,李雷. 一种基于新型KPCA算法的视频压缩感知算法[J].计算机技术与发展,2015,25(10):101.
 QIAN Yang,LI Lei. A Video Compressed Sensing Algorithm Based on Novel KPCA[J].,2015,25(03):101.
[10]余琨,荆晓远,吴飞,等. 基于竞争聚集的K-SVD字典学习算法[J].计算机技术与发展,2015,25(11):44.
 YU Kun,JING Xiao-yuan,WU Fei,et al. K-SVD Dictionary Learning Algorithm Based on Competitive Agglomeration[J].,2015,25(03):44.
[11]沈怡灵,赵明哲,李强懿,等.基于稀疏表示的二值图像超分辨率重建算法[J].计算机技术与发展,2017,27(12):43.[doi:10.3969/ j. issn.1673-629X.2017.12.010]
 SHEN Yi-ling,ZHAO Ming-zhe,LI Qiang-yi,et al.A Super-resolution Reconstruction Algorithm for Binary Image Based on Sparse Representation[J].,2017,27(03):43.[doi:10.3969/ j. issn.1673-629X.2017.12.010]

更新日期/Last Update: 2018-04-26