[1]廖林峰,邱晓晖.基于模糊 C-均值聚类医学图像分割的优化算法[J].计算机技术与发展,2017,27(12):81-84.[doi:10.3969/ j. issn.1673-629X.2017.12.018]
 LIAO Lin-feng,QIU Xiao-hui.An Optimal Algorithm for Medical Image Segmentation Based on Fuzzy C-Means Clustering[J].Computer Technology and Development,2017,27(12):81-84.[doi:10.3969/ j. issn.1673-629X.2017.12.018]
点击复制

基于模糊 C-均值聚类医学图像分割的优化算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年12期
页码:
81-84
栏目:
智能、算法、系统工程
出版日期:
2017-12-10

文章信息/Info

Title:
An Optimal Algorithm for Medical Image Segmentation Based on Fuzzy C-Means Clustering
文章编号:
1673-629X(2017)12-0081-04
作者:
廖林峰邱晓晖
南京邮电大学 通信与信息工程学院,江苏 南京 210003
Author(s):
LIAO Lin-fengQIU Xiao-hui
School of Communication and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
模糊 C-均值聚类遗传算法粒子群算法邻域像素核磁共振成像
Keywords:
Fuzzy C-Means clusteringgenetic algorithmparticle swarm optimizationneighborhood pixelsnuclear magnetic resonance imaging
分类号:
TP301.6
DOI:
10.3969/ j. issn.1673-629X.2017.12.018
文献标志码:
A
摘要:
模糊 C-均值聚类(FCM)算法在分割模糊的医学图像中有很好的效果,通过设置初始聚类中心,根据每个像素的隶属度来划分属于哪一类,采用迭代的方式来得到分割结果。 针对 FCM 算法容易受到聚类中心初始值和噪声的影响,采用遗传算法和粒子群算法的结合算法来确定一组合适的初始聚类中心,通过遗传算法和粒子群算法的结合算法加快了单纯使用遗传算法确定初始聚类中心的收敛速度;再通过引入像素的邻域信息,重构标准 FCM 算法中的目标函数,以提高邻域像素和中心像素之间的相似程度,使得相邻的像素更容易划分到同一类别,克服了标准 FCM 算法只考虑像素间的灰度值而导致对噪声和异常值的敏感问题。 将该方法应用到核磁共振成像(MRI)脑部图像分割实验中,相比标准的 FCM 分割算法和遗传模糊聚类算法,分割效果更好。
Abstract:
Fuzzy C-Means Clustering (FCM) has a good effect in the segmentation of fuzzy medical images. By setting the initial cluster center,the division is carried out according to the membership degree of each pixel,and segmenting results are obtained by means of iteration. Aiming at the problem that FCM is susceptible to initial value of cluster center and noise,the genetic algorithm and particle swarm algorithm are combined to determine a set of suitable initial clustering centers. After combination,the convergence rate of initial clustering center is accelerated than that of only use of genetic algorithm. Then the objective function of standard FCM is reconstructed by introducing neighborhood information of pixels so as to improve the similarity between the neighborhood and the center pixel,which makes the adjacent pixels more divided into the same class and overcomes the problem that the standard FCM only considers the gray value between the pixels and causes the sensitivity to noise and outliers. The proposed method is applied into the MRI brain image segmentation experiment which shows that it is superior to the standard FCM and genetic algorithm on segmentation effect.

相似文献/References:

[1]冯智明,苏一丹,覃华,等.基于遗传算法的聚类与协同过滤组合推荐算法[J].计算机技术与发展,2014,24(01):35.
 FENG Zhi-ming,SU Yi-dan,QIN Hua,et al.Recommendation Algorithm of Combining Clustering with Collaborative Filtering Based on Genetic Algorithm[J].Computer Technology and Development,2014,24(12):35.
[2]余晓光 严洪森 殷乾坤.基于Flexsim的车间调度优化[J].计算机技术与发展,2010,(03):44.
 YU Xiao-guang,YAN Hong-sen,YIN Qian-kun.Workshops Scheduling Optimization Based on Flexsim Simulation[J].Computer Technology and Development,2010,(12):44.
[3]贺计文 宋承祥 刘弘.基于遗传算法的八数码问题的设计及实现[J].计算机技术与发展,2010,(03):105.
 HE Ji-wen,SONG Cheng-xiang,LIU Hong.Design and Implementation of Eight Puzzle Problem Based on Genetic Algorithms[J].Computer Technology and Development,2010,(12):105.
[4]沈珏萍 庄亚明.基于Agent的二级供应链企业自动谈判研究[J].计算机技术与发展,2010,(03):121.
 SHEN Jue-ping,ZHUANG Ya-ming.A Research for Company Automatic Negotiation in Secondary Supply Chain Based on Agent[J].Computer Technology and Development,2010,(12):121.
[5]张磊 王晓军.基于遗传算法的业务流程测试[J].计算机技术与发展,2010,(03):155.
 ZHANG Lei,WANG Xiao-jun.Test of Business Process Based on Genetic Algorithm[J].Computer Technology and Development,2010,(12):155.
[6]曹道友 程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44.
 CAO Dao-you,CHENG Jia-xing.A Genetic Algorithm Based on Modified Selection Operator and Crossover Operator[J].Computer Technology and Development,2010,(12):44.
[7]范维博 周俊 许正良.应用遗传算法求解第一类装配线平衡问题[J].计算机技术与发展,2010,(02):194.
 FAN Wei-bo,ZHOU Jun,XU Zheng-liang.Appication of Genetic Algorithm to Assembly Line Balancing[J].Computer Technology and Development,2010,(12):194.
[8]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].Computer Technology and Development,2010,(12):9.
[9]余晓光 严洪森.基于禁忌搜索遗传混合算法的装配线平衡[J].计算机技术与发展,2010,(05):5.
 YU Xiao-guang,YAN Hong-sen.Assembly Line Balancing Based on Tabu Search and Genetic Hybrid Algorithm[J].Computer Technology and Development,2010,(12):5.
[10]黄永聪 张旭[] 吴义纯 吴琦 程家兴.改进的径向基函数网络的研究及应用[J].计算机技术与发展,2010,(05):158.
 HUANG Yong-cong,ZHANG Xu,WU Yi-chun,et al.Research and Application of Improved Genetic Algorithm-Based RBFANN[J].Computer Technology and Development,2010,(12):158.

更新日期/Last Update: 2018-03-06