[1]吴兴旺[],罗晓莉[],陈可嘉[]. 飞机技术派遣智能决策支持系统框架研究 ——基于大数据视角[J].计算机技术与发展,2017,27(11):159-165.
 WU Xing-wang[],LUO Xiao-li[],CHEN Ke-jia[].Research on Frame of Aircraft Technical Dispatching-Intelligent Decision Support System from Perspective of Big Data[J].,2017,27(11):159-165.
点击复制

 飞机技术派遣智能决策支持系统框架研究 ——基于大数据视角()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年11期
页码:
159-165
栏目:
应用开发研究
出版日期:
2017-11-10

文章信息/Info

Title:
Research on Frame of Aircraft Technical Dispatching-Intelligent Decision Support System from Perspective of Big Data
文章编号:
1673-629X(2017)11-0159-07
作者:
 吴兴旺[1]罗晓莉[2]陈可嘉[2]
 1.厦门航空有限公司;2.福州大学 经济与管理学院
Author(s):
 WU Xing-wang[1]LUO Xiao-li[2]CHEN Ke-jia[2]
关键词:
 大数据飞机技术派遣智能决策支持系统系统框架
Keywords:
 big dataaircraft technical dispatchingintelligent decision support system system framework
分类号:
TP311
文献标志码:
A
摘要:
 随着航空公司日常运行过程中重要和复杂航班的大幅增加,有效提升了飞机技术派遣的决策效率与精准性,对于保障航班安全性和正常性具有重要意义.飞机长期运行及维护过程中积累了海量的健康状况数据,对于飞机技术派遣决策具有重要价值.由于这些数据体量巨大、结构复杂、增长快,引入大数据技术,提出飞机技术派遣智能决策支持系统(ATD-IDSS)的基本框架.文中重点探讨了ATD-IDSS的总体框架结构以及基于该系统的飞机技术派遣决策过程.其中,系统总体框架由数据采集处理、数据管理、模型管理、知识管理、飞机健康评估和派遣决策控制六个子系统组成.详细阐述了各个子系统的组成、核心功能及运行机理.在此基础上,对系统实现涉及的关键技术进行了一一介绍.借助数据仓库相关技术,实现了飞机健康状况大数据的处理和分析,利用关联规则和聚类分析方法,进行飞机技术参数评估.采用人工神经网络和案例推理结合的智能推理策略,挖掘飞机健康状况相关规则和知识,结合云计算技术,提高资源利用率和运算效率.通过ATS-IDSS的框架研究,为进一步开发智能飞机派遣系统、实现飞机派遣的智能化和精准化及提升飞机健康管理水平提供重要指导.
Abstract:
 With the sharp increase of the important and complex flights in the daily operation of the airlines,it is of great significance to effectively enhance the efficiency and accuracy of the aircraft technical dispatch decision-making to ensure the safety and regularity of the flight. Massive aircraft health data accumulated during the long-term operation and maintenance is of great value to the decision-making of aircraft technical dispatch. Due to huge volume, complex structure and rapid growth of these data, the basic framework of Aircraft Technical Dispatching -Intelligent Decision Support System ( ATD-IDSS) is presented by introduction of big data technology. It is dis-cussed with focuses on the overall structure of ATD-IDSS and the process of aircraft technical dispatch decision-making based on the system. The overall structure of ATD-IDSS is composed of six subsystems,which include data acquisition and processing,data manage-ment,model management, knowledge management, aircraft health assessment and dispatch decision control, and the composition, core functions and operating mechanism of each subsystem are described in detail. On this basis,the key technologies involved in the system are introduced. With the help of data warehouse technology,processing and analysis of massive aircraft data with health status is realized. Using association rules mining and cluster analysis to evaluate aircraft technical parameters. The intelligent reasoning strategy combing ar-tificial neural network and case-based reasoning are used to explore the rules and knowledge of aircraft health status. Combined with the use of cloud computing technology,resource utilization and operational efficiency are improved. Through this research,it can provide im-portant guidance for the further development of intelligent aircraft dispatching system,the realization of intelligent and accurate aircraft dispatch and the promotion of aircraft health management level.

相似文献/References:

[1]严霄凤,张德馨.大数据研究[J].计算机技术与发展,2013,(04):168.
 YAN Xiao-feng,ZHANG De-xin.Big Data Research[J].,2013,(11):168.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[11]王雷,陈彦先,袁哲,等. 面向预拌混凝土行业的云计算[J].计算机技术与发展,2014,24(08):14.
 WANG Lei,CHEN Yan-xian,YUAN Zhe JI Xu. Research on Cloud Computing for Ready-mixed Concrete Industry[J].,2014,24(11):14.
[12]金宗泽,冯亚丽,文必龙,等. 大数据分析流程框架的研究[J].计算机技术与发展,2014,24(08):117.
 JIN Zong-ze,FENG Ya-l,WEN Bi-long,et al. Research on Framework of Big Data Analytic Process[J].,2014,24(11):117.
[13]张也弛,周文钦,石润华. 一种面向云的大数据完整性检测协议[J].计算机技术与发展,2014,24(09):68.
 ZHANG Ye-chi,ZHOU Wen-qin,SHI Run-hua. A Big Data Integrity Checking Protocol for Cloud[J].,2014,24(11):68.
[14]谢怡,王航,刘新瀚,等. 大数据环境下数据读取关键技术研究[J].计算机技术与发展,2015,25(02):113.
 XIE Yi,WANG Hang,LIU Xin-han,et al. Research on Data Reading Techniques Based on Big Data Environment[J].,2015,25(11):113.
[15]付燕平,罗明宇,刘其军. 大数据三维模型快速显示技术研究[J].计算机技术与发展,2015,25(05):87.
 FU Yan-ping,LUO Ming-yu,LIU Qi-jun. Research on Fast Display Technology for Big Data Three-dimensional Model[J].,2015,25(11):87.
[16]赵震,任永昌. 大数据时代基于云计算的电子政务平台研究[J].计算机技术与发展,2015,25(10):145.
 ZHAO Zhen,REN Yong-chang. Research on E-government Platform Based on Cloud Computing in Big Data Era[J].,2015,25(11):145.
[17]胡存刚,程莹. 基于粒子群算法的大数据智能搜索引擎的研究[J].计算机技术与发展,2015,25(12):14.
 HU Cun-gang,CHENG Ying. Research on Big Data Intelligent Search Engine Based on PSO[J].,2015,25(11):14.
[18]肖洁,袁嵩,谭天. 大数据时代数据隐私安全研究[J].计算机技术与发展,2016,26(05):91.
 XIAO Jie,YUAN Song,TAN Tian. Research on Data Privacy in Big Data Age[J].,2016,26(11):91.
[19]郭先超,林宗缪,姚文勇. 互联网+质量检测平台设计[J].计算机技术与发展,2016,26(05):120.
 GUO Xian-chao,LIN Zong-miao,YAO Wen-yong. Design of Platform for Internet+ Quality Inspection[J].,2016,26(11):120.
[20]程艳云,张守超,杨杨. 基于大数据的时间序列异常点检测研究[J].计算机技术与发展,2016,26(05):139.
 CHENG Yan-yun,ZHANG Shou-chao,YANG Yang. Research on Time Series Outlier Detection Based on Big Data[J].,2016,26(11):139.

更新日期/Last Update: 2017-12-26