[1]王健,张金. 基于节点权重的网页去噪方法的研究[J].计算机技术与发展,2017,27(10):83-86.
 WANG Jian,ZHANG Jin. Research on Web Page Denoising Method Based on Node Weight[J].,2017,27(10):83-86.
点击复制

 基于节点权重的网页去噪方法的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年10期
页码:
83-86
栏目:
智能、算法、系统工程
出版日期:
2017-10-10

文章信息/Info

Title:
 Research on Web Page Denoising Method Based on Node Weight
文章编号:
1673-629X(2017)10-0083-04
作者:
 王健张金
 南京邮电大学 计算机学院
Author(s):
 WANG JianZHANG Jin
关键词:
 视觉特性节点权重准确率召回率
Keywords:
 vision characteristicsnode weightaccuracy raterecall rate
分类号:
TP301
文献标志码:
A
摘要:
 随着网络信息的不断增多,网页信息不仅成为用户的重要信息来源,同时也是数据挖掘、信息检索等研究的重要数据来源.为提供高质量的文本信息源,页面去噪已经成为网页处理中不可忽视的步骤.随着网页制作技术的不断提升,页面中的视觉元素日益增多,网页节点信息愈加丰富.视觉信息已经成为页面去噪中不可忽视的重要部分.从用户的角度,在浏览网页时,视觉的信息网页能够第一时间反映页面中模块的重要程度.传统的页面去噪技术过多地忽略了页面的视觉特性,面对现今复杂的页面结构,去噪效果大大下降.文中在综合视觉信息和节点信息的基础上,提出了一种基于节点权重的去噪方法,该方法充分考虑了节点的视觉特性和内容特性.实验结果表明,该方法在网页去噪的准确率和召回率上有所提高.
Abstract:
 As the network information is increasing continuously,website information is not only an important information resource of us-ers,but also important data source for data mining,information retrieval and other studies. To provide the text information with high quali-ty,website denoising has become a nonnegligible step for webpage processing. With the continuous improvement of webpage making technology,visual elements in webpage are raised increasingly,and the information of webpage node becomes richer and richer. Visual in-formation has been a nonnegligible and important part in webpage denoising. From a user’ s point of view,the visual information can im-mediately reflect the importance of module in the page when browsing the web page. Traditional webpage denoising technology is neglec-ted in the visual characteristics of webpage too much. Facing to the current complex webpage,the denoising effects are decreased greatly. Based on the comprehensive visual information and node information,a noise weight-based denoising method is proposed which fully considers the visual and content characteristics of nodes. The experimental results indicate that its accuracy rate and recall rate is improved to certain content.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(10):47.

更新日期/Last Update: 2017-11-23