[1]郭青青,周飞飞,李雷. 基于模糊裁剪阈值的SAMP压缩感知算法[J].计算机技术与发展,2017,27(09):35-39.
 GUO Qing-qing,ZHOU Fei-fei,LI Lei. Sparsity Adaptive Matching Pursuit Algorithm for Compressed Sensing with Fuzzy Pruning Threshold[J].,2017,27(09):35-39.
点击复制

 基于模糊裁剪阈值的SAMP压缩感知算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年09期
页码:
35-39
栏目:
智能、算法、系统工程
出版日期:
2017-09-10

文章信息/Info

Title:
 Sparsity Adaptive Matching Pursuit Algorithm for Compressed Sensing with Fuzzy Pruning Threshold
文章编号:
1673-629X(2017)09-0035-05
作者:
 郭青青周飞飞李雷
 南京邮电大学 理学院
Author(s):
 GUO Qing-qing;ZHOU Fei-fei;LI Lei
关键词:
 压缩感知重构算法高频子带小波变换模糊裁剪阈值SAMP算法
Keywords:
 compressed sensingreconstruction algorithmhigh frequency sub-band wavelet transformfuzzy pruning threshold sparsity a-daptive matching pursuit
分类号:
TP301.6
文献标志码:
A
摘要:
 稀疏度自适应匹配追踪(SAMP)算法是压缩感知(CS)中一种主流的图像重构算法.随着迭代次数的增加,SAMP算法的原子候选集将成倍增加,会导致系统空间的浪费和重构时间的增长.为此,提出了一种模糊裁剪阈值稀疏度自适应匹配追踪(FPTSAMP)算法.由于离散小波变换(DWT)在CS稀疏处理过程中破坏了低频逼近系数间的相关性,对信号的重构质量产生了一定的负面影响,因而采用小波高频子带变换(HFSBWT)来替代DWT,实现对信号的稀疏表示.仿真实验结果表明,相比于同一重构算法,采用HFSBWT方法得到的峰值信噪比更好;与SAMP算法相比,与HFSBWT相结合的FPTSAMP算法的重构效果有了明显提高,重构时间也减少了一半.
Abstract:
 Sparsity Adaptive Matching Pursuit ( SAMP) is a mainstream image reconstruction algorithm in Compressed Sensing ( CS) . However,with the increase of iterative times,it has multiplied atoms candidate set that lead to wasting storage capacities and lengthening reconstruction time. A method called Fuzzy Pruning Threshold Sparsity Adaptive Matching Pursuit ( FPTSAMP) is proposed. The Dis-crete Wavelet Transform ( DWT) destroys the correlation among low-frequency approximation coefficients in CS sparsity processing, which results in bad reconstruction quality,so a High Frequency Sub-Band Wavelet Transform ( HFSBWT) is adopted instead of DWT to realize the sparse representation of signal. Simulation results show that compared with the same reconstruction algorithms the HFSBWT has achieved a better Peak Signal To Noise Ratio ( PSNR) of images and that compared with SAMP algorithm the FPTSAMP combined with HFSBWT has lifted the reconstruction performance of images significantly with its reconstruction time cutting in half.

相似文献/References:

[1]张爱华 薄禄裕 盛飞 杨培.基于小波变换的压缩感知在图像加密中的应用[J].计算机技术与发展,2011,(12):145.
 ZHANG Ai-hua,BO Lu-yu,SHENG Fei,et al.Compressed Sensing Based on Single Layer Wavelet Transform for Image Encryption[J].,2011,(09):145.
[2]王韦刚 庄伟胤.基于NIOS Ⅱ的图像压缩感知[J].计算机技术与发展,2012,(04):12.
 WANG Wei-gang,ZHUANG Wei-yin.Compressed Sensing of Image Based on NIOS Ⅱ[J].,2012,(09):12.
[3]王韦刚 胡海峰.基于压缩感知的协作频谱检测[J].计算机技术与发展,2012,(12):241.
 WANG Wei-gang,HU Hai-feng.Collaborative Spectrum Detection Based on Compressed Sensing[J].,2012,(09):241.
[4]张晓咏,熊承义,胡开云,等.基于灰度纹理信息的图像压缩感知编码与重构[J].计算机技术与发展,2013,(01):47.
[5]刘洋,季薇,侯晓赟.一种改进的基于 OMP 重建的宽带频谱感知算法[J].计算机技术与发展,2013,(01):99.
 LIU Yang,JI Wei,HOU Xiao-yun.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on OMP[J].,2013,(09):99.
[6]彭钰,侯晓赟.基于二维压缩感知的双选信道估计[J].计算机技术与发展,2013,(10):220.
 PENG Yu,HOU Xiao-yun.Doubly Selective Channel Estimation Based on Two Dimension Compressed Sensing[J].,2013,(09):220.
[7]李熔.基于截尾估计的概率估计方法[J].计算机技术与发展,2014,24(02):101.
 LI Rong.Probability Estimation Method Based on Truncated Estimation[J].,2014,24(09):101.
[8]李燕,王博.基于压缩感知的数据压缩与检测[J].计算机技术与发展,2014,24(03):198.
 LI Yan,WANG Bo.Data Compression and Detection Based on Compressive Sensing[J].,2014,24(09):198.
[9]周飞飞,李雷.小波高频子带变换裁剪阈值SAMP算法研究[J].计算机技术与发展,2014,24(05):83.
 ZHOU Fei-fei,LI Lei.Research on Clipping Threshold SAMP Algorithm Based on High Frequency Sub-band Wavelet Transform[J].,2014,24(09):83.
[10]刘正其,季薇.一种改进的基于BOMP的宽带频谱感知算法[J].计算机技术与发展,2014,24(06):118.
 LIU Zheng-qi,JI Wei.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on BOMP[J].,2014,24(09):118.
[11]徐志坚,邱晓晖. 采用压缩感知的协作多点信道反馈算法研究[J].计算机技术与发展,2014,24(10):221.
 XU Zhi-jian,QIU Xiao-hui. Study on Channel Feedback Algorithm Using Compressed Sensing for Coordinated Multiple Point[J].,2014,24(09):221.
[12]柯家龙,李继楼. 压缩感知中的投影矩阵优化算法[J].计算机技术与发展,2015,25(03):95.
 KE Jia-long,LI Ji-lou. Algorithm of Optimization for Projection Matrix in Compressive Sensing[J].,2015,25(09):95.
[13]李尚靖[],朱琦[][],朱俊华[]. 基于压缩感知和正弦字典的语音编码新方案[J].计算机技术与发展,2015,25(04):188.
 LI Shang-jing[],ZHU Qi[][],ZHU Jun-hua[]. A New Scheme of Speech Coding Based on Compressed Sensing and Sinusoidal Dictionary[J].,2015,25(09):188.
[14]郭海亮. 基于GEP算法的压缩感知语音观测序列建模[J].计算机技术与发展,2015,25(05):46.
 GUO Hai-liang. Speech Signals Measurements Sequence Modeling in Compressed Sensing Based on GEP[J].,2015,25(09):46.
[15]郭青青,李雷. 基于SiT-ROMP算法的视频封装帧压缩重构研究[J].计算机技术与发展,2015,25(08):113.
 GUO Qing-qing,LI Lei. Research on Compressing and Reconstructing of Encapsulated Video Frame Based on Self-iterative Threshold ROMP Algorithm[J].,2015,25(09):113.
[16]李继楼,柯家龙. 基于压缩感知的WSN数据压缩与重构[J].计算机技术与发展,2015,25(09):111.
 LI Ji-lou,KE Jia-long. Data Compression and Recovery of WSN Based on Compressive Sensing[J].,2015,25(09):111.
[17]钱阳,李雷. 一种基于新型KPCA算法的视频压缩感知算法[J].计算机技术与发展,2015,25(10):101.
 QIAN Yang,LI Lei. A Video Compressed Sensing Algorithm Based on Novel KPCA[J].,2015,25(09):101.
[18]玲玲,齐丽娜. 特征字典与自适应联合的BCS-UWB信道估计[J].计算机技术与发展,2015,25(12):195.
 WANG Ling-ling,QI Li-na. Ultra-wideband Channel Estimation Based on Bayesian Compressive Sensing of Eigen-based Dictionary and Adaptive Joint[J].,2015,25(09):195.
[19]孙君,孙照伟. 基于压缩感知的信道互易性补偿方法[J].计算机技术与发展,2015,25(12):210.
 SUN Jun,SUN Zhao-wei. A Compensation Method for Channel Non-reciprocity Based on Compressive Sensing[J].,2015,25(09):210.
[20]于云,周伟栋. 基于压缩感知的鲁棒性说话人识别参数研究[J].计算机技术与发展,2016,26(03):18.
 YU Yun,ZHOU Wei-dong. Research on Robust Speaker Recognition Parameters Based on Compressed Sensing[J].,2016,26(09):18.

更新日期/Last Update: 2017-10-19