[1]庾晶[],葛军[],郭林[]. 基于骨架特征的人体动作分类研究[J].计算机技术与发展,2017,27(08):83-87.
 YU Jing[],GE Jun[],GUO Lin[]. Investigation on Human Action Classification Based on Skeleton Features[J].,2017,27(08):83-87.
点击复制

 基于骨架特征的人体动作分类研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年08期
页码:
83-87
栏目:
智能、算法、系统工程
出版日期:
2017-08-10

文章信息/Info

Title:
 Investigation on Human Action Classification Based on Skeleton Features
文章编号:
1673-629X(2017)08-0083-05
作者:
 庾晶[1]葛军[1]郭林[2]
 1.南京邮电大学 通信与信息工程学院;2.南京邮电大学 物联网学院,
Author(s):
 YU Jing[1]GE Jun[1]GUO Lin[2]
关键词:
 动作分类姿势识别骨架特征多分类SVM
Keywords:
 action classificationpose estimationskeleton featuresmulti-class SVM
分类号:
TP391
文献标志码:
A
摘要:
 为了能够在丰富复杂的网络信息中快速找到所需图片,提出一种基于骨架特征的人体上半身动作分类方法,以提高相应图片的检索效率.对人体运动图片进行人体运动时上半身姿势识别,得到能够表示人体位置、方向以及大小的"火柴人模型"(即骨架特征),使用矩阵形式对提取到的骨架特征进行描述.为了校正因距离和位置变化造成的尺度差异,对特征矩阵进行归一化处理,然后使用多分类SVM方法对提取的骨架特征进行训练,得到可以对不同动作进行分类的分类器.以收集到的人体运动图片作为测试数据库进行实验,实验结果表明,该算法的分类准确率达到97.36%,能够很好地对人体动作进行分类.同时,在Buffy数据库上进行图片检索对比实验,实验结果表明,所提算法的分类准确率更高,更好地提高了图片检索效率.
Abstract:
 In order to find the desired pictures quickly in the abundant and complex network information,a method for human upper-body action classification based on skeleton features is proposed to improve the efficiency of the corresponding pictures.It does the pose estimation for the image of human motion,acquires the "stickman" (skeleton features) representation of the location,orientation,and size of body parts,and describes the skeleton features with matrix form.In order to correct the scale differences caused by distance and position changes,the feature matrix is normalized.Then the multi-classification SVM is used to train the skeleton features and obtain the classifier which can classify different actions.The images of human motion collected are as the test data for experiments which show that its classification accuracy reaches 97.78% and it can do well in human action classification.At the same time,an image retrieval contrast experiment is done on the Buffy database,which show that it has higher classification accuracy and enhance image retrieval efficiency better.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(08):47.

更新日期/Last Update: 2017-09-21