[1]刘云,王颖,亓国涛,等. 时间上下文的协同过滤Top-N推荐算法[J].计算机技术与发展,2017,27(07):79-82.
 LIU Yun,WANG Ying,QI Guo-tao,et al. Collaborative Filtering Top-N Recommendation Algorithm Based on Time Context[J].,2017,27(07):79-82.
点击复制

 时间上下文的协同过滤Top-N推荐算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年07期
页码:
79-82
栏目:
智能、算法、系统工程
出版日期:
2017-07-10

文章信息/Info

Title:
 Collaborative Filtering Top-N Recommendation Algorithm Based on Time Context
文章编号:
1673-629X(2017)07-0079-04
作者:
 刘云王颖亓国涛包智妍
 华北电力大学 控制与计算机工程学院
Author(s):
 LIU YunWANG YingQI Guo-taoBAO Zhi-yan
关键词:
 协同过滤商品推荐时间影响权重因子时间衰减
Keywords:
 collaborative filtercommodity recommendationtime effectweight factortime decay
分类号:
TP399
文献标志码:
A
摘要:
 在推荐系统中,通过收集和分析用户在系统中的所有行为信息,创建用户独有的偏好模型,从而根据该模型推断出用户可能感兴趣的物品.传统协同推荐算法一般都是利用收集的用户行为信息,根据偏好模型分析用户的行为特点,筛选出向用户推荐的物品列表,但推荐列表大同小异.为了提高推荐的准确性和精确性,让用户在不同的时间可以看到不同的推荐结果,提出了以传统协同过滤算法为基础的改进算法.在分析用户行为信息,建立用户行为特征时,考虑不同时间下用户历史信息也不同,时间越近越能反映当前用户行为特征.用户在较短时间间隔内感兴趣的物品,具有更高的相似度.故以时间作为权重因子引入到算法中,加重近期行为在算法中所占的比重,优先向用户推荐与他浏览过的物品类似的物品,从而提高推荐物品的多样性.在典型数据集上的实验表明,在保证推荐准确度的前提下,融合时间的推荐算法准确率和召回率明显提高,验证了该算法的有效性.
Abstract:
 In recommending systems,by collecting and analyzing all behavior information of system for users,the unique user preference model is created and according to it,interested goods of users are inferred.The traditional collaborative recommendation algorithm recommends the goods by analyzing the characteristics of the user behavior according to the collected user behavior information.However,the items are similar.In order to improve accuracy and precision that users often see the different recommendation results,an improved method is proposed based on the traditional collaborative filtering one.While users’ behavior characteristic is extracted,they have different effects at different time points.It’s getting closer time to reflect user features and higher similarity,so the weight factor is introduced into the algorithm to aggravate proportion about recent behavior.Giving priority to recommend similar items the users’ likes recently can improve recommendation diversity.On the premise of accuracy,the effectiveness has been verified in typical recommendation data set.The results show that it improves the accuracy and recall rate by experimental analysis.

相似文献/References:

[1]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].,2010,(07):67.
[2]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(07):69.
[3]姜雅倩 王直杰 张珏.基于供求关系及协同过滤技术的推荐模型研究[J].计算机技术与发展,2007,(06):18.
 JIANG Ya-qian,WANG Zhi-jie,ZHANG Jue.Research on Recommendation Model Based on Supply and Demand Relation and Collaborative Filtering[J].,2007,(07):18.
[4]游文 叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,(09):70.
 YOU Wen,YE Shui-sheng.A Survey of Collaborative Filtering Algorithm Applied in E- commerce Recommender System[J].,2006,(07):70.
[5]徐红 彭黎 郭艾寅 徐云剑.基于用户多兴趣的协同过滤策略改进研究[J].计算机技术与发展,2011,(04):73.
 XU Hong,PENG Li,GUO Ai-yin,et al.User-Based Collaborative Filtering Strategies More Interested in Improvement of Research[J].,2011,(07):73.
[6]杨东风 牛永洁.基于混合规则的图书推荐模型设计与研究[J].计算机技术与发展,2011,(07):210.
 YANG Dong-feng,NIU Yong-jie.Books Recommended Model Design and Research Based on Mixing Rules[J].,2011,(07):210.
[7]吴月萍 王娜 马良.基于蚁群算法的协同过滤推荐系统的研究[J].计算机技术与发展,2011,(10):73.
 WU Yue-ping,WANG Na,MA Liang.Research of Collaboration Filtering Recommendation System Based on Ant Algorithm[J].,2011,(07):73.
[8]李克潮,蓝冬梅.一种属性和评分的协同过滤混合推荐算法[J].计算机技术与发展,2013,(07):116.
 LI Ke-chao,LAN Dong-mei.A Collaborative Filtering Hybrid Recommendation Algorithm for Attribute and Rating[J].,2013,(07):116.
[9]范虎,花伟伟.协同过滤推荐算法的研究与改进[J].计算机技术与发展,2013,(09):66.
 FAN Hu[],HUA Wei-wei[].Research and Improvement of Collaborative Filtering Recommendation Algorithm[J].,2013,(07):66.
[10]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[11]李振博,徐桂琼,査九. 基于用户谱聚类的协同过滤推荐算法[J].计算机技术与发展,2014,24(09):59.
 LI Zhen-bo,XU Gui-qiong,ZHA Jiu. A Collaborative Filtering Recommendation Algorithm Based on User Spectral Clustering[J].,2014,24(07):59.
[12]李荟,谢强,丁秋林. 一种基于情景的协同过滤推荐算法[J].计算机技术与发展,2014,24(10):42.
 LI Hui,XIEQiang,DING Qiu-lin. A Collaborative Filtering Recommendation Algorithm Based on Scenario[J].,2014,24(07):42.
[13]陈彦萍,王赛. 基于用户-项目的混合协同过滤算法[J].计算机技术与发展,2014,24(12):88.
 CHEN Yan-ping,WANG Sai. A Hybrid Collaborative Filtering Algorithm Based on User-item[J].,2014,24(07):88.
[14]王全民,苗雨,何明,等. 基于矩阵分解的协同过滤算法的并行化研究[J].计算机技术与发展,2015,25(02):55.
 ANG Quan-min,MIAO Yu,HE Ming,et al. Parallelized Research on Collaborative Filtering Algorithm Based on Matrix Factorization[J].,2015,25(07):55.
[15]程高伟,丁亦喆,吴振强. 结合用户评分和项目标签的协同过滤算法[J].计算机技术与发展,2015,25(03):71.
 CHENG Gao-wei,DING Yi-zhe,WU Zhen-qiang. Collaborative Filtering Algorithm Combined User Ratings with Item Tags[J].,2015,25(07):71.
[16]张晓琳,付英姿,褚培肖. 杰卡德相似系数在推荐系统中的应用[J].计算机技术与发展,2015,25(04):158.
 ZHANG Xiao-lin,FU Ying-zi,CHU Pei-xiao. Application of Jaccard Similarity Coefficient in Recommender System[J].,2015,25(07):158.
[17]查九,李振博,徐桂琼. 基于用户近邻约束的矩阵因子分解算法[J].计算机技术与发展,2015,25(06):1.
 ZHA Jiu,LI Zhen-bo,XU Gui-qiong. A Matrix Factorization Algorithm Based on User’ s Neighbors Regularized[J].,2015,25(07):1.
[18]周莹莹,王晓军. 利用离群点算法预处理协同过滤推荐系统数据[J].计算机技术与发展,2015,25(09):129.
 ZHOU Ying-ying,WANG Xiao-jun. Pre-filtering Data of Collaborative Filtering Recommendation System by Outliers Algorithm[J].,2015,25(07):129.
[19]王全民,王莉,曹建奇. 基于评论挖掘的改进的协同过滤推荐算法[J].计算机技术与发展,2015,25(10):24.
 WANG Quan-min,WANG Li,CAO Jian-qi. Improved Collaborative Filtering Recommendation Algorithm Based on Comments Mining[J].,2015,25(07):24.
[20]葛林涛,徐桂琼. 基于模糊C均值聚类有效性的协同过滤算法[J].计算机技术与发展,2016,26(01):22.
 E Lin-tao,XU Gui-qiong. A Collaborative Filtering Algorithm Based on Fuzzy C-means Clustering Validity[J].,2016,26(07):22.

更新日期/Last Update: 2017-08-22