[1]沈海迪,万振凯. 基于指数平滑法的动态预测机制[J].计算机技术与发展,2017,27(07):6-9.
 SHEN Hai-di,WAN Zhen-kai. A Dynamic Prediction Mechanism Based on Exponential Smoothing Method[J].,2017,27(07):6-9.
点击复制

 基于指数平滑法的动态预测机制()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年07期
页码:
6-9
栏目:
智能、算法、系统工程
出版日期:
2017-07-10

文章信息/Info

Title:
 A Dynamic Prediction Mechanism Based on Exponential Smoothing Method
文章编号:
1673-629X(2017)07-0006-04
作者:
 沈海迪万振凯
 天津工业大学 计算机科学与软件学院
Author(s):
 SHEN Hai-diWAN Zhen-kai
关键词:
 预测模型指数平滑法传统模型动态平滑系数多媒体教室
Keywords:
 prediction modelexponential smoothing methodtraditional modeldynamic smoothing coefficientmultimedia classroom
分类号:
TP393
文献标志码:
A
摘要:
 对数据进行实时预测,从而制定下阶段的工作计划,对于生活中的工作生产具有很大意义.现阶段存在很多预测模型,其中,指数平滑法在短期预测中应用较为广泛.针对传统预测模型中存在的方法单一,预测模式固定,不能更好地追随数据的变化趋势,具有局限性等问题,提出了一种基于传统模型的动态预测机制.该预测机制在预测过程中选取一定步长的数据,根据数据的实际变化趋势得到可变的平滑系数,此平滑系数能够根据实际数据的变化趋势进行自动调整,使预测模型在预测过程中能追踪到数据的实际走势,具有更高的自适应性.在仿真实验中,以某高校多媒体教室的实际使用频率作为实验数据,对修正后的模型和传统模型进行对比,结果显示,修正后的动态预测机制具有更高的预测精度,且模型简单易用,能够满足实际情况的需要.
Abstract:
 Real time prediction for data and developing the work plan in next phase is significant for the production of life.There are many prediction models in the present stage in which the exponential smoothing method is widely used in short-term forecasting.In view of problems of the traditional forecasting model like single way,fixed forecasting mode,not better following the trend of the change of the data and the limitation and so on,a dynamic prediction mechanism based on the traditional model is proposed.It selects a certain step of data in the prediction process and acquires variable smoothing coefficient according to the actual changes of data.The smoothing coefficient can be adjusted automatically according to the change trend of the actual data,making the forecast model can be traced to the actual trend of the data in the prediction process,which has a higher adaptability.In the simulation experiment,the actual usage frequency of the multimedia classroom in a college is used as the experimental data to compare the modified model and the traditional model.The result shows that the modified dynamic prediction mechanism has higher prediction accuracy,and the model is simple and easy to use,and can meet the needs of the actual situation.

相似文献/References:

[1]李霞.ID3分类算法在银行客户流失中的应用研究[J].计算机技术与发展,2009,(03):158.
 LI Xia.ID3 Applying to Loss of Bank Clients[J].,2009,(07):158.
[2]邱东 陈爽 仝彩霞 朱里红 王龙山.钢铁企业高炉煤气平衡与综合优化[J].计算机技术与发展,2009,(03):196.
 QIU Dong,CHEN Shuang,TONG Cai-xia,et al.Blast Furnace Gas Balance and Comprehensive Optimization in Iron and Steel Enterprises[J].,2009,(07):196.
[3]杨颖 陈德华.基于小波神经网络的时间序列流数据的研究[J].计算机技术与发展,2006,(06):193.
 YANG Ying,CHEN De-hua.Research for Model of Time Series Streaming Based on Wavelet Neural Network[J].,2006,(07):193.
[4]张瑞敏 黄梦涛 程青涛.智能神经元网络时间序列预测模型的研究[J].计算机技术与发展,2012,(03):74.
 ZHANG Rui-min,HUANG Meng-tao,CHENG Qing-tao.Application of Dynamic Intelligent Neural Network in Time Series Prediction[J].,2012,(07):74.
[5]吕克 徐夫田 舒文迪.基于神经网络的鸟撞预测模型应用研究[J].计算机技术与发展,2012,(05):90.
 LUE Ke,XU Fu-tian,SHU Wen-di.Bird-Strike Prediction Model Application and Research Based on Neural Network[J].,2012,(07):90.
[6]彭勇 陈俞强 严文杰.基于改进BP网络模型的公路流量预测[J].计算机技术与发展,2012,(08):111.
 PENG Yong,CHEN Yu-qiang,YAN Wen-jie.Forecasting Highway Flow Based on Improved BP Neural Network Model[J].,2012,(07):111.
[7]赵伟.一种改进的网络流量预测模型研究[J].计算机技术与发展,2013,(04):20.
 ZHAO Wei.Research on an Improved Prediction Model of Network Traffic[J].,2013,(07):20.
[8]邵鸿玲,吴陈,杨习贝.商业智能在连锁企业进销存管理中的应用研究[J].计算机技术与发展,2013,(07):198.
 SHAO Hong-ling,WU Chen,YANG Xi-bei.Research and Application on Business Intelligence in Chain Enterprise Inventory Management[J].,2013,(07):198.
[9]李炜,潘作舟,杨静.RI地震预测模型的分析及其验证[J].计算机技术与发展,2013,(09):255.
 LI Wei,PAN Zuo-zhou,YANG Jing.Analysis and Verification in RI Earthquake Forecast Model[J].,2013,(07):255.
[10]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.

更新日期/Last Update: 2017-08-22