[1]杨悦,顾晓瑜. 基于线性判别分析的室内声源定位方法[J].计算机技术与发展,2017,27(06):187-190.
 YANG Yue,GU Xiao-yu. Indoor Acoustic Source Localization Method with LDA[J].,2017,27(06):187-190.
点击复制

 基于线性判别分析的室内声源定位方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年06期
页码:
187-190
栏目:
应用开发研究
出版日期:
2017-06-10

文章信息/Info

Title:
 Indoor Acoustic Source Localization Method with LDA
文章编号:
1673-629X(2017)06-0187-04
作者:
 杨悦顾晓瑜
 南京邮电大学 通信与信息工程学院
Author(s):
 YANG YueGU Xiao-yu
关键词:
 声源定位相位变换加权广义互相关函数LDA分类器朴素贝叶斯分类器
Keywords:
 acoustic localizationPHAT-GCCLDA classifier Naive Bayes classifier
分类号:
TP301
文献标志码:
A
摘要:
 在小信噪比和混响时间较长的恶劣环境下,基于模式分类的手段能够有效克服传统的声源定位算法鲁棒能力不足的缺点,其中朴素贝叶斯分类器定位的准确率高,计算量小,鲁棒能力强.在此基础上,为了获得更好的定位性能,提出使用线性判别分析(LDA)分类器进行声源定位.使用Matlab进行仿真,截取声源信号的相位变换加权广义互相关函数(PHAT-GCC)作为特征向量,通过投影变换,找到最佳的特征空间来区分特征数据,从而训练得到线性判别分析分类器.然后在不同的混响时间和信噪比的条件下,进行定位测试,比较了线性判别分析分类器和朴素贝叶斯分类器的性能.仿真结果表明,在环境恶劣场合更宜使用线性判别分析分类器,特别是混响严重时,线性判别分析分类器的定位准确率比朴素贝叶斯分类器高1%~2%.
Abstract:
 The method based on pattern classification can overcome the deficiency of traditional acoustic source localization algorithms which has an insufficient robust ability in the harsh environment of small SNR and severe reverberation.Among them,Naive Bayes classifier has high location accuracy with a small amount of calculation and strong robustness.In order to achieve better localization performance,Linear Discriminant Analysis (LDA) classifier is adopted to locate acoustic source on the basis of former research.It has been tested by Matlab,while the Phase Transform Generalized Cross-Correlation (PHAT-GCC) function would be used as feature vector.LDA classifier has been trained through projection transformation which could help to find a better feature space to discriminate the feature data.Subsequently,the source would be located in different reverberation and noisy conditions to compare the performance with LDA classifier and Naive Bayes classifier.The simulation results have demonstrated that LDA classifier is a better choice in harsh environment and that the location accuracy of LDA classifier is higher than that of Naive Bayes classifier by 1% to 2%,especially in severe reverberation environment.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(06):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(06):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(06):47.
[11]杨洋[],王秀芹[]. 基于能量衰减的增量式声源跟踪算法研究[J].计算机技术与发展,2014,24(12):41.
 YANG Yang[],WANG Xiu-qin[]. Research on Incremental Tracking Algorithm of Sound Source Based on Energy Attenuation[J].,2014,24(06):41.
[12]顾晓瑜,杨悦. 一种基于SVM的声源定位算法[J].计算机技术与发展,2017,27(09):70.
 GU Xiao-yu,YANG Yue. A Sound Source Localization Algorithm with Support Vector Machine[J].,2017,27(06):70.

更新日期/Last Update: 2017-07-28