[1]余敖,陈亮,彭敬涛. 基于迟滞ELM模型的短期风速预测[J].计算机技术与发展,2017,27(06):130-135.
 YU Ao,CHEN Liang,PENG Jing-tao. Short-term Wind Speed Forecasting by Using Hysteretic ELM Model[J].,2017,27(06):130-135.
点击复制

 基于迟滞ELM模型的短期风速预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年06期
页码:
130-135
栏目:
应用开发研究
出版日期:
2017-06-10

文章信息/Info

Title:
 Short-term Wind Speed Forecasting by Using Hysteretic ELM Model
文章编号:
1673-629X(2017)06-0130-06
作者:
 余敖陈亮彭敬涛
东华大学 信息科学与技术学院
Author(s):
 YU AoCHEN LiangPENG Jing-tao
关键词:
 极速学习机迟滞风速预测机器学习
Keywords:
 ELMhysteresiswind speed predictionmachine learning
分类号:
TP391
文献标志码:
A
摘要:
 为了应对能源危机,许多国家开始大力发展最有发展前景之一的风能,而风速预测是进行风电场出力预测的前提条件.目前常用的风速预测方法没有得到很高的预测精度以及预测时间.为了改善风速时间序列的预测精度和预测时间,提出了一种基于迟滞极速学习机(Extreme Learning Machine)模型的风速预测方法.ELM算法是一种新型神经网络,计算效率高,性能优越,能避免局部最小化.通过改变神经元激励函数的方式将迟滞特性引入神经网络中,以增强历史输入对当前响应的影响,从而提高有用信息的利用率,提高风速时间序列的预测性能.仿真结果表明,与ELM模型等方法相比,迟滞ELM模型能够有效减小风速时间序列的预测误差,提高了预测精度以及减少了预测时间.
Abstract:
 The wind,as one of the most promising energy,has been developed by many countries in response to the energy crisis,and the wind speed prediction is the premise of wind farm output prediction.Many wind speed prediction methods are adopted to get high prediction accuracy and prediction of time presently.In order to improve the prediction accuracy and time of wind speed time series,a wind speed prediction method based on hysteresis ELM algorithm has been proposed.ELM algorithm is a new type of neural network,and it has high computational efficiency and superior performance,which can avoid local minimum.Hysteresis characteristics have been introduced in neural network via changing neuronal excitation function to enhance influence of the response history to the current input and thus to improve the utilization rate of useful information and to promote the wind speed time series prediction performance.The simulation results show that compared with the ELM model,the hysteresis ELM model can reduce prediction error of wind speed time series effectively for improvement of prediction accuracy and decreasing of prediction time.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(06):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(06):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(06):47.

更新日期/Last Update: 2017-07-28