[1]穆珺[],晏峻峰[],彭清华[],等. 基于霍夫变换的可见光虹膜图像定位[J].计算机技术与发展,2017,27(05):40-45.
 MU Jun[],YAN Jun-feng[],PENG Qing-hua[],et al. Iris Localization for Visible-light Images Based on Hough Transform[J].,2017,27(05):40-45.
点击复制

 基于霍夫变换的可见光虹膜图像定位()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年05期
页码:
40-45
栏目:
智能、算法、系统工程
出版日期:
2017-05-10

文章信息/Info

Title:
 Iris Localization for Visible-light Images Based on Hough Transform
文章编号:
1673-629X(2017)05-0040-06
作者:
 穆珺[1]晏峻峰[1]彭清华[1]费洪晓[2]
 1.湖南中医药大学 数字中医药协同创新中心;2.中南大学 软件学院
Author(s):
 MU Jun[1]YAN Jun-feng[1]PENG Qing-hua[1]FEI Hong-xiao[2]
关键词:
 虹膜定位可见光虹膜图像颜色分布先验霍夫变换
Keywords:
 iris localizationvisible-light iris imagesprior of color distributionHough transform
分类号:
TP301.6
文献标志码:
A
摘要:
 虹膜定位是虹膜识别中的关键步骤,而非理想条件下的可见光虹膜图像定位算法则是近年来的研究热点.为了提高虹膜定位的精度,提出了一种基于霍夫变换的可见光虹膜图像定位算法,分析并确定了先定位虹膜外边界、再定位内边界的顺序,以提高边界定位准确度;针对外边界定位存在的问题,利用可见光虹膜图像颜色分布的先验信息,进行了边缘检测与筛选,提高了定位的速度与准确度;在此基础上,借助瞳孔和虹膜的位置关系指导虹膜内边界定位,进行了高光噪声检测与去除,采用基于距离约束的霍夫变换,排除噪声影响和减少计算时间.实验结果表明,该算法具有较高的定位准确度,并且能处理诸如严重遮挡、成像模糊、区域对比度低、虹膜纹理与隐形眼镜等干扰情况下的虹膜图像.
Abstract:
 As a crucial step in iris recognition,the iris localization algorithms,especially those dealing with iris images taken in visible-light under non-ideal imaging conditions have received increasing attention recently.A localization algorithm for visible-light iris images has been proposed to enhance the accuracy of iris localization.The strategy of localizing limbic boundary has been determined which is carried out from out boundary to inner verge of iris to promote the accuracy of boundary location.To solve the problem in localizing limbic boundary,the prior of color distribution has been utilized to remove the noise in the edge map of the iris image for increase of the accuracy and speed of limbic boundary localization.Therefore,the relevance between center positions of iris and pupil has been utilized to instruct the pupil boundary localization and the reflections in pupil region have been detected and removed with Hough transform on distance limitation to eliminate the noise effects and to reduce computation time via estimation of the pupil radius and center.Experimental results demonstrate that the localization accuracy of the proposed method is higher than traditional methods and has more capabilities such as dealing with iris images with occlusion,blur imaging,low contrast and interfering texture.

相似文献/References:

[1]许威,权芳芳,姜媛媛,等.改进的算法在虹膜识别中的应用研究[J].计算机技术与发展,2013,(03):34.
 XU Wei,QUAN Fang-fang,JIANG Yuan-yuan,et al.Research on Application of Iris Recognition Based on Improved Algorithm[J].,2013,(05):34.
[2]赵静.基于二维小波变换的圆形算子虹膜定位算法[J].计算机技术与发展,2013,(04):51.
 ZHAO Jing.Circular Operator Iris Localization Algorithm Based on Two-dimensional Wavelet Transform[J].,2013,(05):51.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(05):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(05):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(05):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(05):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(05):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(05):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(05):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(05):38.

更新日期/Last Update: 2017-07-06