[1]张小燕,吐尔洪江·阿布都克力木. 小波变换的阈值图像去噪算法改进[J].计算机技术与发展,2017,27(03):81-84.
 ZHANG Xiao-yan,Turghunjan ABDUKIRIM TURKI. Improvement of Threshold Image Denoising Algorithm with Wavelet Transform[J].,2017,27(03):81-84.
点击复制

 小波变换的阈值图像去噪算法改进()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年03期
页码:
81-84
栏目:
智能、算法、系统工程
出版日期:
2017-03-10

文章信息/Info

Title:
 Improvement of Threshold Image Denoising Algorithm with Wavelet Transform
文章编号:
1673-629X(2017)03-0081-04
作者:
 张小燕;吐尔洪江·阿布都克力木
 新疆师范大学 数学科学学院
Author(s):
 ZHANG Xiao-yanTurghunjan ABDUKIRIM TURKI
关键词:
 小波变换阈值函数图像去噪均方差峰值信噪比
Keywords:
 wavelet transformthreshold functionimage denoisingMSEPSNR
分类号:
TP301.6
文献标志码:
A
摘要:
 通过分析研究发现D.L.Donoho提出的小波阈值去噪方法,以及文中提及的已构造出的小波阈值函数在图像去噪方面仍存在问题.为了进一步改善这些问题,综合典型的小波阈值函数的优点与一些改进方法,提出一种改进的新阈值函数.该阈值函数不仅在阈值处连续,而且含有参数,可通过调整参数来调节阈值化小波系数和原始小波系数之间的恒定偏差,同时其还具有可微性便于计算.为了突出表现构造的新阈值函数的优越性,通过仿真实验对文中提出的几种小波去噪方法的均方差(MSE)和峰值信噪比(PSNR)进行对比.实验结果表明,利用新构造的阈值函数去噪,去噪后的图像无论是视觉效果还是在均方差、峰值信噪比等的性能上都比传统的软、硬阈值和已有的阈值去噪效果好.
Abstract:
 There are many problems for wavelet threshold denoising method proposed by D. L. Donoho and constructed wavelet threshold function mentioned in this paper in image denoising through analysis and research. In order to improve these problems,a new improved threshold function has been presented which integrates the advantages of classical wavelet threshold function and other improved methods. This function is not only continuous at a specific threshold, but also involves parameters. Thus, constant deviation between threshold wavelet coefficients and original wavelet ones can be adjusted by regulating the parameters. Meanwhile,it is of differentiability convenient for calculations. In order to highlight the advantages of the threshold function constructed,Mean Square Errors ( MES) and Peak Signal to Noise Ratios ( PSNR) of several wavelet denoising methods are compared with proposed method in simulation experiment. Results of the experiment show that the images denoised with new threshold function are better than those with traditional soft and hard threshold func-tions and existent threshold functions,either in visual effect or performance parameters such as MES and/or PSNR.

相似文献/References:

[1]杨亚 王铮 张素兰 郭飞飞.基于小波变换的多聚焦图像融合[J].计算机技术与发展,2010,(03):56.
 YANG Ya,WANG Zheng,ZHANG Su-lan,et al.Multi - focus Image Fusion Scheme Based on Wavelet Transform[J].,2010,(03):56.
[2]刘会英 张政保 文家福 李占德.一种带纠错编码的小波域自适应盲水印算法[J].计算机技术与发展,2010,(03):140.
 LIU Hui-ying,ZHANG Zheng-bao,WEN Jia-fu,et al.A Wavelet Domain Adaptive Blind Watermarking Algorithm with Error Correcting Encoding[J].,2010,(03):140.
[3]郭航宇 景晓军 尚勇.基于小波变换和数学形态法的车牌定位方法研究[J].计算机技术与发展,2010,(05):13.
 GUO Hang-yu,JING Xiao-jun,SHANG Yong.License Plate Location Method Based on Wavelet Transform and Mathematical Morphology[J].,2010,(03):13.
[4]钱颖雪 左洪福 李耀华.小波与傅里叶变换耦合的静电监测信号去噪法[J].计算机技术与发展,2009,(07):1.
 QIAN Ying-xue,ZUO Hong-fu,LI Yao-hua.Static Monitoring Signal De- noising by Wavelet and FFT[J].,2009,(03):1.
[5]赵兵.小波变换阈值降噪在电力负荷管理终端中的应用[J].计算机技术与发展,2009,(07):206.
 ZHAO Bing.Application of Wavelet Transform Threshold Noise Reduction in Load Management Terminal[J].,2009,(03):206.
[6]张登银 薄顺荣 许扬扬.边缘检测算法改进及其在QoE测定中的应用[J].计算机技术与发展,2009,(08):49.
 ZHANG Deng-yin,BO Shun-rong,XU Yang-yang.Improved Image Edge Detection Algorithm and Its Application in QoE Measurement[J].,2009,(03):49.
[7]朱良燕 毛军军 苗强 吴涛[].合肥市降水变化趋势分形特征分析与预测[J].计算机技术与发展,2009,(09):17.
 ZHU Liang-yan,MAO Jun-jun,MIAO Qiang,et al.Analysis of Precipitation Changes Trend Fractal Features and Forecasts in Hefei[J].,2009,(03):17.
[8]王树梅 王志成 蔡健.一种基于灰度形态学的小波域边缘检测算法[J].计算机技术与发展,2009,(01):32.
 WANG Shu-mei,WANG Zhi-cheng,CAI Jian.A Novel Edge- Detection Algorithm in Wavelet Gray - Scale Morphology[J].,2009,(03):32.
[9]单立场 蔡坤宝 王永东.多分辨率分析在HRV信号分析中的应用[J].计算机技术与发展,2008,(01):250.
 SHAN Li-chang,CAI Kun-bao,WANG Yong-dong.Application of Multi Resolution Analysis to HRV Signal Analysis[J].,2008,(03):250.
[10]邢丹俊 王继成.基于提升小波的自适应阈值图像去噪[J].计算机技术与发展,2008,(02):42.
 XING Dan-jun,WPNG Ji-cheng.Adaptive Threshold Based on Lifting Wavelet Transform for Image Denoising[J].,2008,(03):42.
[11]鄂旭[] [],毕佳娜[],侯建[],等. 一种车牌智能定位方法研究[J].计算机技术与发展,2014,24(10):124.
 E Xu[] [],BI Jia-na[],HOU Jian[],et al. Research on a License Plate Intelligent Localization Method[J].,2014,24(03):124.
[12]李智,张根耀,王蓓. 基于一种新的阈值函数的小波图像去噪[J].计算机技术与发展,2014,24(11):100.
 LI Zh,ZHANG Gen-yao,WANG Bei. Wavelet Image Denoising Based on a New Threshold Function[J].,2014,24(03):100.
[13]张方舟,王徐研,郝庆辉. 基于遗传分形编码的嵌入式小波图像编码算法[J].计算机技术与发展,2015,25(01):128.
 ZHANG Fang-zhou,WANG Xu-yan,HAO Qing-hui. Embedded Wavelet Image Coding Algorithm Based on a Genetic Fractal Coding [J].,2015,25(03):128.
[14]佳伟[],徐煜明[][],肖贤建[]. 基于小波变换和迭代反向投影的超分辨率算法[J].计算机技术与发展,2015,25(02):74.
 SONG Jia-wei[],XU Yu-ming[][],XIAO Xian-jian[]. A Super Resolution Algorithm Based on Wavelet Transform and Iterative Back Projection[J].,2015,25(03):74.
[15]汪慧兰,毛晓辉,杨晶晶,等. 融合小波变换和SIFT特征的商标检索方法[J].计算机技术与发展,2015,25(04):89.
 WANG Hui-lan,MAO Xiao-hui,YANG Jing-jing,et al. Trademark Retrieval Method Combining Wavelet Transform and SIFT Features[J].,2015,25(03):89.
[16]荣雁霞,邱晓晖. 基于小波变换的分块压缩感知算法[J].计算机技术与发展,2015,25(05):29.
 RONG Yan-xia,QIU Xiao-hui. Image Blocking Compressed Sensing Algorithm Based on Wavelet Transform[J].,2015,25(03):29.
[17]王树梅,张文斌. 小波变换在数字图像边缘探测中的应用[J].计算机技术与发展,2015,25(06):16.
 WANG Shu-mei,ZHANG Wen-bin. Application of Wavelet Transform in Edge Detection for Digital Image[J].,2015,25(03):16.
[18]卢曾新,曲大鹏,范铁生. 基于多普勒波和小波变换的图像置乱算法[J].计算机技术与发展,2015,25(07):138.
 LU Zeng-xin,QU Da-peng,FAN Tie-sheng. Image Scrambling Algorithm Based on Doppler and Wavelet Transform[J].,2015,25(03):138.
[19]尚福华[],柴艳领[],杜睿山[],等. 小波双线性插值算法在测井曲线相似中的应用[J].计算机技术与发展,2015,25(09):66.
 HANG Fu-hua[],CHAI Yan-ling[],DU Rui-shan[],et al. Application of Wavelet Bilinear Interpolation Algorithm in Well-logging Curve Similarity[J].,2015,25(03):66.
[20]段晓杰,张绍成,曲大鹏,等. 基于混沌和小波变换系数的数字图像水印算法[J].计算机技术与发展,2015,25(10):34.
 DUAN Xiao-jie,ZHANG Shao-cheng,QU Da-peng,et al. Digital Image Watermarking Algorithm Based on Chaos and Wavelet Transform Coefficient[J].,2015,25(03):34.

更新日期/Last Update: 2017-05-12