[1]刘艳,宋欢欢,李雷. 压缩感知中基于快速不动点迭代算法的研究[J].计算机技术与发展,2017,27(03):52-56.
 LIU Yan,SONG Huan-huan,LI Lei. Research on Iteration Algorithm Based on a Fast Fixed Point in Compressed Sensing[J].,2017,27(03):52-56.
点击复制

 压缩感知中基于快速不动点迭代算法的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年03期
页码:
52-56
栏目:
智能、算法、系统工程
出版日期:
2017-03-10

文章信息/Info

Title:
 Research on Iteration Algorithm Based on a Fast Fixed Point in Compressed Sensing
文章编号:
1673-629X(2017)03-0052-05
作者:
 刘艳宋欢欢李雷
 南京邮电大学 非结构化数据计算理论与应用研究中心
Author(s):
LIU YanSONG Huan-huanLI Lei
关键词:
 压缩感知图像重构传统不动点迭代算法快速不动点迭代算法收敛速度重构质量
Keywords:
 Compressed Sensing ( CS)image reconstructionfixed point continuation methodfast fixed point continuation methodcon-vergence speedquality of reconstructed
分类号:
TP301.6
文献标志码:
A
摘要:
 针对传统迭代算法在解决大规模问题时速度较慢的问题,在介绍了压缩感知中重构的基本模型以及传统不动点迭代方法(FPC)的基础上,提出了一种新的重构算法-快速不动点迭代方法(FFPC).传统的不动点迭代方法其实是基于算子分裂的方法.为了提高去重构性能,通过引入软阈值和正则化参数的双收缩,逐步迭代恢复原始图像信号,以加快算法的收敛速度,减小重构误差,从而改善图像的重构质量.仿真结果表明,在相同的实验环境下,与传统的不动点迭代算法以及其他算法相比,快速不动点迭代算法重构图像的峰值信噪比较高,相对误差较小,在低采样率下运行时间较少,性能最优.
Abstract:
 Due to the low convergence rate of traditional iterative methods for solving large-scale problems,a fast fixed point continuation method is proposed after introducing the reconstructed models and the traditional fixed point continuation methods. This method,which brings in soft threshold shrinkage and regularization parameter shrinkage,restores image signals by gradual iteration in order to speed up the convergence rate and improve the quality of restored images. Simulation results show that compared with traditional fixed point contin-uation methods,it makes Peak Signal to Noise Ratio ( PSNR) of the reconstructed image higher and the relative error smaller,and reduces running time when the sampling rate is low.

相似文献/References:

[1]张爱华 薄禄裕 盛飞 杨培.基于小波变换的压缩感知在图像加密中的应用[J].计算机技术与发展,2011,(12):145.
 ZHANG Ai-hua,BO Lu-yu,SHENG Fei,et al.Compressed Sensing Based on Single Layer Wavelet Transform for Image Encryption[J].,2011,(03):145.
[2]王韦刚 庄伟胤.基于NIOS Ⅱ的图像压缩感知[J].计算机技术与发展,2012,(04):12.
 WANG Wei-gang,ZHUANG Wei-yin.Compressed Sensing of Image Based on NIOS Ⅱ[J].,2012,(03):12.
[3]王韦刚 胡海峰.基于压缩感知的协作频谱检测[J].计算机技术与发展,2012,(12):241.
 WANG Wei-gang,HU Hai-feng.Collaborative Spectrum Detection Based on Compressed Sensing[J].,2012,(03):241.
[4]张晓咏,熊承义,胡开云,等.基于灰度纹理信息的图像压缩感知编码与重构[J].计算机技术与发展,2013,(01):47.
[5]刘洋,季薇,侯晓赟.一种改进的基于 OMP 重建的宽带频谱感知算法[J].计算机技术与发展,2013,(01):99.
 LIU Yang,JI Wei,HOU Xiao-yun.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on OMP[J].,2013,(03):99.
[6]彭钰,侯晓赟.基于二维压缩感知的双选信道估计[J].计算机技术与发展,2013,(10):220.
 PENG Yu,HOU Xiao-yun.Doubly Selective Channel Estimation Based on Two Dimension Compressed Sensing[J].,2013,(03):220.
[7]李熔.基于截尾估计的概率估计方法[J].计算机技术与发展,2014,24(02):101.
 LI Rong.Probability Estimation Method Based on Truncated Estimation[J].,2014,24(03):101.
[8]李燕,王博.基于压缩感知的数据压缩与检测[J].计算机技术与发展,2014,24(03):198.
 LI Yan,WANG Bo.Data Compression and Detection Based on Compressive Sensing[J].,2014,24(03):198.
[9]周飞飞,李雷.小波高频子带变换裁剪阈值SAMP算法研究[J].计算机技术与发展,2014,24(05):83.
 ZHOU Fei-fei,LI Lei.Research on Clipping Threshold SAMP Algorithm Based on High Frequency Sub-band Wavelet Transform[J].,2014,24(03):83.
[10]刘正其,季薇.一种改进的基于BOMP的宽带频谱感知算法[J].计算机技术与发展,2014,24(06):118.
 LIU Zheng-qi,JI Wei.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on BOMP[J].,2014,24(03):118.
[11]徐志坚,邱晓晖. 采用压缩感知的协作多点信道反馈算法研究[J].计算机技术与发展,2014,24(10):221.
 XU Zhi-jian,QIU Xiao-hui. Study on Channel Feedback Algorithm Using Compressed Sensing for Coordinated Multiple Point[J].,2014,24(03):221.
[12]柯家龙,李继楼. 压缩感知中的投影矩阵优化算法[J].计算机技术与发展,2015,25(03):95.
 KE Jia-long,LI Ji-lou. Algorithm of Optimization for Projection Matrix in Compressive Sensing[J].,2015,25(03):95.
[13]李尚靖[],朱琦[][],朱俊华[]. 基于压缩感知和正弦字典的语音编码新方案[J].计算机技术与发展,2015,25(04):188.
 LI Shang-jing[],ZHU Qi[][],ZHU Jun-hua[]. A New Scheme of Speech Coding Based on Compressed Sensing and Sinusoidal Dictionary[J].,2015,25(03):188.
[14]郭海亮. 基于GEP算法的压缩感知语音观测序列建模[J].计算机技术与发展,2015,25(05):46.
 GUO Hai-liang. Speech Signals Measurements Sequence Modeling in Compressed Sensing Based on GEP[J].,2015,25(03):46.
[15]郭青青,李雷. 基于SiT-ROMP算法的视频封装帧压缩重构研究[J].计算机技术与发展,2015,25(08):113.
 GUO Qing-qing,LI Lei. Research on Compressing and Reconstructing of Encapsulated Video Frame Based on Self-iterative Threshold ROMP Algorithm[J].,2015,25(03):113.
[16]李继楼,柯家龙. 基于压缩感知的WSN数据压缩与重构[J].计算机技术与发展,2015,25(09):111.
 LI Ji-lou,KE Jia-long. Data Compression and Recovery of WSN Based on Compressive Sensing[J].,2015,25(03):111.
[17]钱阳,李雷. 一种基于新型KPCA算法的视频压缩感知算法[J].计算机技术与发展,2015,25(10):101.
 QIAN Yang,LI Lei. A Video Compressed Sensing Algorithm Based on Novel KPCA[J].,2015,25(03):101.
[18]玲玲,齐丽娜. 特征字典与自适应联合的BCS-UWB信道估计[J].计算机技术与发展,2015,25(12):195.
 WANG Ling-ling,QI Li-na. Ultra-wideband Channel Estimation Based on Bayesian Compressive Sensing of Eigen-based Dictionary and Adaptive Joint[J].,2015,25(03):195.
[19]孙君,孙照伟. 基于压缩感知的信道互易性补偿方法[J].计算机技术与发展,2015,25(12):210.
 SUN Jun,SUN Zhao-wei. A Compensation Method for Channel Non-reciprocity Based on Compressive Sensing[J].,2015,25(03):210.
[20]于云,周伟栋. 基于压缩感知的鲁棒性说话人识别参数研究[J].计算机技术与发展,2016,26(03):18.
 YU Yun,ZHOU Wei-dong. Research on Robust Speaker Recognition Parameters Based on Compressed Sensing[J].,2016,26(03):18.

更新日期/Last Update: 2017-05-12