[1]毕超,冯玉田,李园辉,等. 语音信号的分块稀疏表示分类研究[J].计算机技术与发展,2017,27(03):44-47.
 BI Chao,FENG Yu-tian,LI Yuan-hui,et al. Investigation of Voice Signal Classification with Block Sparse[J].,2017,27(03):44-47.
点击复制

 语音信号的分块稀疏表示分类研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年03期
页码:
44-47
栏目:
智能、算法、系统工程
出版日期:
2017-03-10

文章信息/Info

Title:
 Investigation of Voice Signal Classification with Block Sparse
文章编号:
1673-629X(2017)03-0044-04
作者:
 毕超冯玉田李园辉王瑞
 上海大学 通信与信息工程学院
Author(s):
 BI ChaoFENG Yu-tianLI Yuan-huiWANG Rui
关键词:
 稀疏表示分类分块稀疏声频传感器语音信号处理
Keywords:
 sparse representation classificationblock sparseaudio sensorvoice signal processing
分类号:
TP391.4
文献标志码:
A
摘要:
 传统稀疏表示分类算法(SRC)在处理复杂多维的向量的时候,需要对稀疏后的每个信号单独处理求残差,会导致处理时间过长,无法有效地运用于实际的工程应用中.为解决这一问题,提出将图像处理的分块稀疏应用于语音稀疏表示分类的方法.该方法在传统稀疏表示分类的基础上,引入分块稀疏思想,将语音信号按指定的长度处理,从而将若干个稀疏系数组成稀疏组来进行进一步分类识别.验证实验表明,源于图像处理的分块稀疏表示分类法同样适用于语音信号的处理.实验结果表明,在识别率接近的情况下,语音信号分类识别所花费的时间比图像处理明显降低.这是因为图像稀疏分类的系数之间相关性较强,因而分类的识别率较高;而语音信号是典型的非平稳过程,各种特征参数随时间快速变化,因而根据长度分类的相关性显著减少.因此,语音信号识别的准确率虽然会有所降低,但其效率显著提升.
Abstract:
 In dealing with complex multidimensional vector,traditional Sparse Representation Classification ( SRC) has spent too much time on computing the residual error by sparse signal after each individual treatment,which is unable to be applied in practical engineering effectively. In order to solve this problem,the block sparse method of image processing has been introduced to the voice of the sparse rep-resentation classification,which is based on the traditional sparse representation classification and merged with idea of block sparse. Audio signal is treated via given length so that a sparse group has been constructed with several sparse coefficients for further classification in the voice field. Validation experiments have been conducted and its results show that block sparse representation classification stemmed from image processing can be applied in speech signal processing and that time consumption of audio signal classification is less than image processing under the condition of the same recognition rate,due to high correlativity among the coefficients of image sparse classification and thus high recognition rate. This is also because speech signal is classical non-stationary process and its characteristic parameters vary with time rapidly,thus the correlativity of classification with length has been reduced significantly. Therefore,although accuracy of speech signal recognition could decrease,recognition efficiency would be exalted notably.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(03):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(03):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(03):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(03):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(03):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(03):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(03):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(03):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(03):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(03):47.

更新日期/Last Update: 2017-05-12