[1]刘春燕[],杨巍巍[]. 云计算基于遗传粒子群算法的多目标任务调度[J].计算机技术与发展,2017,27(02):56-59.
 LIU Chun-yan[],YANG Wei-wei[]. A Multi-objective Task Scheduling Based on Genetic and Particle Swarm Optimization Algorithm for Cloud Computing[J].,2017,27(02):56-59.
点击复制

 云计算基于遗传粒子群算法的多目标任务调度()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年02期
页码:
56-59
栏目:
智能、算法、系统工程
出版日期:
2017-02-10

文章信息/Info

Title:
 A Multi-objective Task Scheduling Based on Genetic and Particle Swarm Optimization Algorithm for Cloud Computing
文章编号:
1673-629X(2017)02-0056-04
作者:
 刘春燕[1] 杨巍巍[2]
 1.武汉理工大学华夏学院信息工程系;2.中国五环工程有限公司设备室
Author(s):
 LIU Chun-yan[1]YANG Wei-wei[2]
关键词:
 云计算任务调度多目标遗传算法粒子群算法
Keywords:
 cloud computingtask schedulingmulti-objectivegenetic algorithmparticle swarm optimization algorithm
分类号:
TP391
文献标志码:
A
摘要:
 合理地进行任务调度是云计算长期以来存在的挑战.云任务的调度过程具有动态性的特点,仅从单一方面来优化调度策略已不能满足用户需求.针对上述问题,从任务完成时间、任务完成成本、资源利用率三个方面出发,提出一种基于遗传与粒子群算法融合的多目标任务调度算法.在遗传算法的变异操作中引入粒子群算法,既可以发挥遗传算法全局搜索能力强的优势,又可以利用粒子群算法的反馈特性改善变异操作提高收敛速度.通过CloudSim平台进行云环境仿真实验,将此算法与遗传算法(GA)和粒子群算法(PSO)进行比较.实验结果表明,在相同的条件设置下,该算法在用户满意度和资源利用率方面都优于遗传算法和粒子群算法,是一种云计算环境下有效的任务调度算法.
Abstract:
 How to schedule tasks reasonably remains a long-standing challenge in cloud computing.The process of the cloud task scheduling has the characteristics of dynamic,so to optimize the scheduling strategy only from a single aspect cannot meet the needs of users.To solve the above problem,from three aspects of task completion time,task completion cost and resource utilization,a multi-objective task scheduling algorithm based on genetic algorithm and particle swarm optimization algorithm is proposed.Particle swarm optimization algorithm is introduced into mutation operation of genetic algorithm which can not only give play to advantage of quick global searching speed for genetic algorithm,but also apply particle swarm optimization algorithm’s feedback characteristic to improve mutation operation and convergence rate.CloudSim is adopted to simulate the cloud environment,and the GA and PSO is compared.The simulation results show that under the same conditions,the combined algorithm outperforms other two algorithms on task completion time,task completion cost and resource utilization.It is an efficient task scheduling algorithm in the cloud computing environment.

相似文献/References:

[1]王茜,朱志祥,史晨昱,等.应用于数据库安全保护的加解密引擎系统[J].计算机技术与发展,2014,24(01):143.
 WANG Qian[],ZHU Zhi-xiang[],SHI Chen-yu[],et al.Encryption and Decryption Engine System Applying to Database Security and Detection[J].,2014,24(02):143.
[2]陈丹伟 黄秀丽 任勋益.云计算及安全分析[J].计算机技术与发展,2010,(02):99.
 CHEN Dan-wei,HUANG Xiu-li,REN Xun-yi.Analysis of Cloud Computing and Cloud Security[J].,2010,(02):99.
[3]孙放 陈云芳 林杭锋.适用于富客户端的云计算模型[J].计算机技术与发展,2010,(08):96.
 SUN Fang,CHEN Yun-fang,LIN Hang-feng.Cloud Computing Model Applicable to Rich Client Applications[J].,2010,(02):96.
[4]郭苑 张顺颐 孙雁飞.物联网关键技术及有待解决的问题研究[J].计算机技术与发展,2010,(11):180.
 GUO Yuan,ZHANG Shun-yi,SUN Yan-fei.Research of Key Technologies and Unresolved Questions of Internet of Things[J].,2010,(02):180.
[5]李玲娟 张敏.云计算环境下关联规则挖掘算法的研究[J].计算机技术与发展,2011,(02):43.
 LI Ling-juan,ZHANG Min.Research on Algorithms of Mining Association Rule under Cloud Computing Environment[J].,2011,(02):43.
[6]王德政 申山宏 周宁宁.云计算环境下的数据存储[J].计算机技术与发展,2011,(04):81.
 WANG De-zheng,SHEN Shan-hong,ZHOU Ning-ning.Data Storage in Cloud Computing Environment[J].,2011,(02):81.
[7]宋丽华 姜家轩 张建成 田长录 马文征.黄河三角洲云计算平台关键技术的研究[J].计算机技术与发展,2011,(06):40.
 SONG Li-hua,JIANG Jia-xuan,ZHANG Jian-cheng,et al.Research of Key Technologies of Cloud Computing of Yellow River Delta[J].,2011,(02):40.
[8]田宏伟 解福 倪俊敏.云计算环境下基于粒子群算法的资源分配策略[J].计算机技术与发展,2011,(12):22.
 TIAN Hong-wei,XIE Fu,NI Jun-min.Resource Allocation Algorithm Based on Particle Swarm Algorithm in Cloud Computing Environment[J].,2011,(02):22.
[9]张慧 邢培振.云计算环境下信息安全分析[J].计算机技术与发展,2011,(12):164.
 ZHANG Hui,XING Pei-zhen.Information Security Analysis in Cloud Computing Environment[J].,2011,(02):164.
[10]张建成[] 宋丽华[] 鹿全礼[] 郭锐[] 刘永泉[].云计算方案分析研究[J].计算机技术与发展,2012,(01):165.
 ZHANG Jian-cheng,SONG Li-hua,LU Quan-li,et al.Study and Analysis of Cloud Computing Procedure[J].,2012,(02):165.
[11]王雷,陈彦先,袁哲,等. 面向预拌混凝土行业的云计算[J].计算机技术与发展,2014,24(08):14.
 WANG Lei,CHEN Yan-xian,YUAN Zhe JI Xu. Research on Cloud Computing for Ready-mixed Concrete Industry[J].,2014,24(02):14.
[12]殷小龙,李君,万明祥. 云环境下基于改进NSGA II的虚拟机调度算法[J].计算机技术与发展,2014,24(08):71.
 YIN Xiao-long,LI Jun,WAN Ming-xiang. Virtual Machines Scheduling Algorithm Based on Improved NSGA II in Cloud Environment[J].,2014,24(02):71.
[13]张也弛,周文钦,石润华. 一种面向云的大数据完整性检测协议[J].计算机技术与发展,2014,24(09):68.
 ZHANG Ye-chi,ZHOU Wen-qin,SHI Run-hua. A Big Data Integrity Checking Protocol for Cloud[J].,2014,24(02):68.
[14]徐源吾[][],王珣[][]. 基于Hadoop的智能家居信息处理平台[J].计算机技术与发展,2014,24(09):183.
 XU Yuan-wu[] [],WANG Xun[][]. nformation Processing Platform of Smart Home Based on Hadoop[J].,2014,24(02):183.
[15]谢福伟,梁昌勇,马银超. 基于云计算的景区数据仓库应用研究[J].计算机技术与发展,2014,24(09):198.
 XIE Fu-wei,LIANG Chang-yong,MA Yin-chao. Research on Data Warehouse Application of Tourist Areas Data Based on Cloud Computing[J].,2014,24(02):198.
[16]孙滔,王杉,邢军. 文献共享系统和数据共享系统的云计算平台建设[J].计算机技术与发展,2014,24(09):206.
 SUN Tao,WANG Shan,XING Jun. Construction of Cloud Computing Platform of Sci-tech Literature Sharing System and Data Sharing System[J].,2014,24(02):206.
[17]周文琼[],王乐球[],郑述招[]. 云环境下的数据库扩展策略的设计[J].计算机技术与发展,2014,24(09):213.
 ZHOU Wen-qiong[],WANG Le-qiu[],ZHENG Shu-zhao[]. Design of Database Expansion Strategy under Cloud Computing[J].,2014,24(02):213.
[18]申侃,梁昌勇,赵树平. 基于云的MIS开放式体系结构[J].计算机技术与发展,2014,24(10):21.
 SHEN Kan,LIANG Chang-yong,ZHAO Shu-ping. Open Architecture of MIS Based on Cloud[J].,2014,24(02):21.
[19]王霞俊. 云环境下一种基于能耗感知的虚拟机部署算法[J].计算机技术与发展,2014,24(10):88.
 WANG Xia-jun. A Virtual Machine Allocation Algorithm Based on Power-aware in Cloud Computing[J].,2014,24(02):88.
[20]孟蒙,茅苏. 基于云计算的可反馈负载均衡策略的研究[J].计算机技术与发展,2014,24(10):135.
 MENG Meng,MAO Su. Study on Feedback Load Balancing Strategy Based on Cloud Computing[J].,2014,24(02):135.

更新日期/Last Update: 2017-05-11