[1]郭建峰[][],李玉[],安东[]. 基于LM遗传神经网络的短期股价预测[J].计算机技术与发展,2017,27(01):152-155.
 GUO Jian-feng[][],LI Yu[],AN Dong[]. Prediction for Short-term Stock Price Based on LM-GA-BP Neural Network[J].,2017,27(01):152-155.
点击复制

 基于LM遗传神经网络的短期股价预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年01期
页码:
152-155
栏目:
出版日期:
2017-01-10

文章信息/Info

Title:
 Prediction for Short-term Stock Price Based on LM-GA-BP Neural Network
文章编号:
1673-629X(2017)01-0152-04
作者:
 郭建峰[1][2] 李玉[1] 安东[1]
 西安邮电大学;英国雷丁大学
Author(s):
 GUO Jian-feng[1][2]LI Yu[1] AN Dong[1]
关键词:
 人工智能BP神经网络LM算法遗传算法股票短期价格预测
Keywords:
 artificial intelligenceBP ( Back Propagation ) neural networkLM ( Levenberg-Marquardt ) algorithmGenetic Algorithm ( GA) short-term stock price prediction
分类号:
TP301.6
文献标志码:
A
摘要:
 随着人工智能的不断发展,BP神经网络作为其中一种重要的技术,被广泛应用在股票预测领域。 BP神经网络有很强的非线性逼近能力、自学习自适应等特性,故非常适合解决股价预测中的一些复杂问题。但其在实际的应用过程中还存在一些问题导致其不能很好地进行预测,如网络收敛速度比较慢和容易产生局部最优值等缺点。针对BP神经网络自身存在的这些不足,提出了一种改进的BP神经网络算法。就是通过LM算法改进BP神经网络里的梯度下降法并用遗传算法优化网络参数,即网络的初始权值和阈值,从而提高了网络的收敛速度和搜索全局最优值的能力。用改进后的网络对股票短期价格进行仿真测试,结果表明,改进后的BP神经网络模型有着更快的收敛速度和更高的精确性。
Abstract:
 With the development of artificial intelligence,BP neural network,as one of the important technology,is widely used in stock prediction. The neural network,which has the capabilities of non-linear approach,self-learning and self-adaption,is very suitable for sol-ving some complex problems in the stock market. But there are many problems in practical applications result in its poor prediction,such as low convergence speed and local minimum. In order to deal with the defects,an improved BP neural network is proposed by using Lev-enberg-Marquardt ( LM) algorithm to improve the gradient descent in BP neural network and Genetic Algorithm ( GA) to optimize the network’s initial weights and thresholds. It enhances the convergence speed of the algorithm and the ability to search the global optimiza-tion. The model is simulated on short-term stock price prediction and the results indicate that the improved BP model has high conver-gence speed and accuracy.

相似文献/References:

[1]张春飞 李万龙 郑山红.Agent技术在智能教学系统中的应用与研究[J].计算机技术与发展,2009,(05):30.
 ZHANG Chun-fei,LI Wan-long,ZHENG Shan-hong.Application and Research of Agent Technology in Intelligent Tutoring System[J].,2009,(01):30.
[2]黄长专 王彪 杨忠.图像分割方法研究[J].计算机技术与发展,2009,(06):76.
 HUANG Chang-zhuan,WANG Biao,YANG Zhong.A Study on Image Segmentation Techniques[J].,2009,(01):76.
[3]张春飞 郑山红 李万龙.基于Agent技术的医疗信息整合研究[J].计算机技术与发展,2009,(10):250.
 ZHANG Chun-fei,ZHENG Shan-hong,LI Wan-long.Research on Integration of Healthcare Enterprise Based on Agent Technology[J].,2009,(01):250.
[4]杜秀全 程家兴.博弈算法在黑白棋中的应用[J].计算机技术与发展,2007,(01):216.
 DU Xiu-quan,CHENG Jia-xing.Game- Playing Algorithm in Black and White Chess Application[J].,2007,(01):216.
[5]孙锦 冯勤超.创造力支持系统[J].计算机技术与发展,2007,(03):138.
 SUN Jin,FENG Qin-chao.Creativity Support System[J].,2007,(01):138.
[6]吉张媛 何华灿.模糊Prolog系统[J].计算机技术与发展,2006,(02):123.
 JI Zhang-yuan,HE Hua-can.Fuzzy Prolog System[J].,2006,(01):123.
[7]丁莹.研究人工智能的一条新途径[J].计算机技术与发展,2012,(03):133.
 DING Ying.A New Avenue of Researching on AI[J].,2012,(01):133.
[8]张代远[].一类新型改进的广义蚁群优化算法[J].计算机技术与发展,2012,(06):39.
 ZHANG Dai-yuan.A New Improved Generalized Ant Colony Optimization Algorithm[J].,2012,(01):39.
[9]于尚超 李阳 王鹏.基于拼凑替换的定理机器证明的研究与实现[J].计算机技术与发展,2012,(06):135.
 YU Shang-chao,LI Yang,WANG Peng.Research and Realization of Theorem Proving Based on Combination and Replace[J].,2012,(01):135.
[10]朱志慧 李雷 种冬梅.改进的BT—SVM应用于电力系统SSA[J].计算机技术与发展,2012,(09):157.
 ZHU Zhi-hui,LI Lei,CHONG Dong-mei.Improved Binary Tree Support Vector Machine and Its Application to Power System Static Security Assessment[J].,2012,(01):157.
[11]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[12]唐启涛. 基于改进的遗传算法的智能组卷算法研究[J].计算机技术与发展,2014,24(12):241.
 TANG Qi-tao. Research on Intelligent Test Paper Generating Algorithm Based on Improved Genetic Algorithm[J].,2014,24(01):241.
[13]袁小敏[],曹云峰[],庄丽葵[]. 飞控系统数字化设计的专家系统研究[J].计算机技术与发展,2015,25(04):30.
 YUAN Xiao-min[],CAO Yun-feng[],ZHUANG Li-kui[]. Research on Expert System for Digital Design of Flight Control System[J].,2015,25(01):30.
[14]葛夕武[],朱超[],马骏毅[],等. 基于耦合隐马尔可夫模型的输电线路状态评估[J].计算机技术与发展,2017,27(04):154.
 GE Xi-wu[],ZHU Chao[],MA Jun-yi[],et al. State Evaluation of Transmission Line Based on CoupledHidden Markov Model[J].,2017,27(01):154.
[15]梅欢[] [],马艳东[] [],单九思[],等. 基于样条插值与RBF网络的道岔故障诊断系统[J].计算机技术与发展,2017,27(05):160.
 MEI Huan[][],MA Yan-dong[] [],SHAN Jiu-si[],et al. Research on Switch Fault Diagnosis System with Cubic SplineInterpolation and RBF Neural Network[J].,2017,27(01):160.

更新日期/Last Update: 2017-04-05