[1]张昱[],曹伟[],邵世祥[]. 低功耗无线传感网节点的混合监听休眠方法[J].计算机技术与发展,2016,26(10):196-199.
 ZHANG Yu[],CAO Wei[],SHAO Shi-xiang[]. A Hybrid Monitor Sleep Method of Low-power Wireless Sensor Network Nodes[J].,2016,26(10):196-199.
点击复制

 低功耗无线传感网节点的混合监听休眠方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年10期
页码:
196-199
栏目:
应用开发研究
出版日期:
2016-10-10

文章信息/Info

Title:
 A Hybrid Monitor Sleep Method of Low-power Wireless Sensor Network Nodes
文章编号:
1673-629X(2016)10-0196-04
作者:
 张昱[1] 曹伟[2]邵世祥[1]
 1.南京邮电大学 通信与信息工程学院;2.上海无线通信研究中心
Author(s):
 ZHANG Yu[1]CAO Wei[2]SHAO Shi-xiang[1]
关键词:
 混合监听周期实时性低功耗无线传感器
Keywords:
 mixed SNIFF periodreal-timelow-powerwireless sensor
分类号:
TP393
文献标志码:
A
摘要:
 随着无线传感器网络的演化发展,其应用领域也越来越广泛。例如现有的公共事业抄表系统、建设中的环境实时监测系统以及未来将实现的工业4.0中智能工厂监控系统,都会利用大量的无线传感器进行数据监测和采集。这些数据监测采集系统通常需要支持远程数据采集和移动端近距离数据采集两种模式。通过采用这两种模式的不同特点,即:唤醒时延的不同需求以及所能够支持的不同的数据传输速率,提出采用混合监听周期这一方法。该方法能够支持实时的数据监测采集,与单一监听周期相比明显降低了监听功耗,延长了传感器节点的工作时间,完全符合移动端近距离数据采集的实时性需求。
Abstract:
 With the evolution of the development of wireless sensor networks,its applications are increasingly widespread. For example, existing public utilities meter reading system,the construction of real-time monitoring systems and environmental future 4. 0 intelligent industrial plant monitoring system will use a lot of wireless sensor for monitoring and data collection. These data acquisition systems often require monitoring to support remote data collection and mobile data collection. By using different characteristics of these two modes, which are waking the different needs of delays and supporting different data transfer rates,the hybrid method of listening period is pro-posed. This approach can support real-time data monitoring collection,and significantly reduce power consumption compared with a sin-gle listening period and extend the operating time of sensor nodes,in full compliance with the real-time requirements of data collection in close distance for the mobile terminal.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(10):47.

更新日期/Last Update: 2016-11-29