[1]胡艳华[],唐新来[][]. 基于改进遗传算法的云计算任务调度算法[J].计算机技术与发展,2016,26(10):137-141.
 HU Yan-hua[],TANG Xin-lai[][]. A Task Scheduling Algorithm Based on Improved Genetic Algorithm in Cloud Computing Environment[J].,2016,26(10):137-141.
点击复制

 基于改进遗传算法的云计算任务调度算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年10期
页码:
137-141
栏目:
应用开发研究
出版日期:
2016-10-10

文章信息/Info

Title:
 A Task Scheduling Algorithm Based on Improved Genetic Algorithm in Cloud Computing Environment
文章编号:
1673-629X(2016)10-0137-05
作者:
 胡艳华[1]唐新来[1][2]
 1.广西科技大学鹿山学院 电气与计算机工程系;2.广西科技大学 教务处
Author(s):
 HU Yan-hua[1] TANG Xin-lai[1][2]
关键词:
 云计算遗传算法任务调度Min-Min算法Max-Min算法
Keywords:
 cloud computinggenetic algorithmtask schedulingMin-Min algorithmMax-Min algorithm
分类号:
TP393
文献标志码:
A
摘要:
 任务调度是云计算的核心问题。云计算中的任务调度算法要求在提高系统吞吐量和最大跨度的同时又要兼顾资源的安全与负载均衡问题。传统遗传算法因具有强大的并行空间搜索能力而在云计算中得到广泛应用,但其亦存在明显不足,即随着计算机规模的不断扩大,收敛性逐渐降低,存在易早熟等不足,限制了其调度性能。而Min-Min和Max-Min算法简单易行,且具有较好的时间跨度,可以较好地弥补传统算法的不足。在传统遗传算法的基础上,结合Min-Min和Max-Min算法,提出了一种新的云计算任务调度算法,在产生初始化种群时引入Min-Min和Max-Min算法,并选取任务完成时间和负载均衡作为双适应度函数,提高了初始化种群的质量、算法搜索能力以及收敛速度。仿真结果表明,该算法优于传统遗传算法,是一种有效的云计算任务调度算法。
Abstract:
 Task scheduling mechanism is one of the core issues in cloud computing. The task scheduling algorithm in cloud computing re-quires improvement of the system throughput and the largest span while considering resources security and load balancing problems. As a classical task scheduling algorithm with powerful and implicit parallel space search capability,genetic algorithm is widely used in cloud computing. However,it has many deficiencies,such as slow convergence and premature with the increasing calculation scale. Min-Min al-gorithm and Max-Min algorithm are simple and practicable with better makespan,which can well make up the deficiencies of traditional genetic algorithm. On this basis,an improved algorithm is put forward,which introduces Min-Min algorithm and Max-Min algorithm in the process of population initialization,and uses the minimizing makespan and the load balancing of resource as double-fitness function meanwhile. The simulation shows that this algorithm can elevate the quality of initial population,the search capability and the convergence rate,which is more efficient.

相似文献/References:

[1]王茜,朱志祥,史晨昱,等.应用于数据库安全保护的加解密引擎系统[J].计算机技术与发展,2014,24(01):143.
 WANG Qian[],ZHU Zhi-xiang[],SHI Chen-yu[],et al.Encryption and Decryption Engine System Applying to Database Security and Detection[J].,2014,24(10):143.
[2]陈丹伟 黄秀丽 任勋益.云计算及安全分析[J].计算机技术与发展,2010,(02):99.
 CHEN Dan-wei,HUANG Xiu-li,REN Xun-yi.Analysis of Cloud Computing and Cloud Security[J].,2010,(10):99.
[3]孙放 陈云芳 林杭锋.适用于富客户端的云计算模型[J].计算机技术与发展,2010,(08):96.
 SUN Fang,CHEN Yun-fang,LIN Hang-feng.Cloud Computing Model Applicable to Rich Client Applications[J].,2010,(10):96.
[4]郭苑 张顺颐 孙雁飞.物联网关键技术及有待解决的问题研究[J].计算机技术与发展,2010,(11):180.
 GUO Yuan,ZHANG Shun-yi,SUN Yan-fei.Research of Key Technologies and Unresolved Questions of Internet of Things[J].,2010,(10):180.
[5]李玲娟 张敏.云计算环境下关联规则挖掘算法的研究[J].计算机技术与发展,2011,(02):43.
 LI Ling-juan,ZHANG Min.Research on Algorithms of Mining Association Rule under Cloud Computing Environment[J].,2011,(10):43.
[6]王德政 申山宏 周宁宁.云计算环境下的数据存储[J].计算机技术与发展,2011,(04):81.
 WANG De-zheng,SHEN Shan-hong,ZHOU Ning-ning.Data Storage in Cloud Computing Environment[J].,2011,(10):81.
[7]宋丽华 姜家轩 张建成 田长录 马文征.黄河三角洲云计算平台关键技术的研究[J].计算机技术与发展,2011,(06):40.
 SONG Li-hua,JIANG Jia-xuan,ZHANG Jian-cheng,et al.Research of Key Technologies of Cloud Computing of Yellow River Delta[J].,2011,(10):40.
[8]田宏伟 解福 倪俊敏.云计算环境下基于粒子群算法的资源分配策略[J].计算机技术与发展,2011,(12):22.
 TIAN Hong-wei,XIE Fu,NI Jun-min.Resource Allocation Algorithm Based on Particle Swarm Algorithm in Cloud Computing Environment[J].,2011,(10):22.
[9]张慧 邢培振.云计算环境下信息安全分析[J].计算机技术与发展,2011,(12):164.
 ZHANG Hui,XING Pei-zhen.Information Security Analysis in Cloud Computing Environment[J].,2011,(10):164.
[10]张建成[] 宋丽华[] 鹿全礼[] 郭锐[] 刘永泉[].云计算方案分析研究[J].计算机技术与发展,2012,(01):165.
 ZHANG Jian-cheng,SONG Li-hua,LU Quan-li,et al.Study and Analysis of Cloud Computing Procedure[J].,2012,(10):165.
[11]王雷,陈彦先,袁哲,等. 面向预拌混凝土行业的云计算[J].计算机技术与发展,2014,24(08):14.
 WANG Lei,CHEN Yan-xian,YUAN Zhe JI Xu. Research on Cloud Computing for Ready-mixed Concrete Industry[J].,2014,24(10):14.
[12]殷小龙,李君,万明祥. 云环境下基于改进NSGA II的虚拟机调度算法[J].计算机技术与发展,2014,24(08):71.
 YIN Xiao-long,LI Jun,WAN Ming-xiang. Virtual Machines Scheduling Algorithm Based on Improved NSGA II in Cloud Environment[J].,2014,24(10):71.
[13]张也弛,周文钦,石润华. 一种面向云的大数据完整性检测协议[J].计算机技术与发展,2014,24(09):68.
 ZHANG Ye-chi,ZHOU Wen-qin,SHI Run-hua. A Big Data Integrity Checking Protocol for Cloud[J].,2014,24(10):68.
[14]徐源吾[][],王珣[][]. 基于Hadoop的智能家居信息处理平台[J].计算机技术与发展,2014,24(09):183.
 XU Yuan-wu[] [],WANG Xun[][]. nformation Processing Platform of Smart Home Based on Hadoop[J].,2014,24(10):183.
[15]谢福伟,梁昌勇,马银超. 基于云计算的景区数据仓库应用研究[J].计算机技术与发展,2014,24(09):198.
 XIE Fu-wei,LIANG Chang-yong,MA Yin-chao. Research on Data Warehouse Application of Tourist Areas Data Based on Cloud Computing[J].,2014,24(10):198.
[16]孙滔,王杉,邢军. 文献共享系统和数据共享系统的云计算平台建设[J].计算机技术与发展,2014,24(09):206.
 SUN Tao,WANG Shan,XING Jun. Construction of Cloud Computing Platform of Sci-tech Literature Sharing System and Data Sharing System[J].,2014,24(10):206.
[17]周文琼[],王乐球[],郑述招[]. 云环境下的数据库扩展策略的设计[J].计算机技术与发展,2014,24(09):213.
 ZHOU Wen-qiong[],WANG Le-qiu[],ZHENG Shu-zhao[]. Design of Database Expansion Strategy under Cloud Computing[J].,2014,24(10):213.
[18]申侃,梁昌勇,赵树平. 基于云的MIS开放式体系结构[J].计算机技术与发展,2014,24(10):21.
 SHEN Kan,LIANG Chang-yong,ZHAO Shu-ping. Open Architecture of MIS Based on Cloud[J].,2014,24(10):21.
[19]王霞俊. 云环境下一种基于能耗感知的虚拟机部署算法[J].计算机技术与发展,2014,24(10):88.
 WANG Xia-jun. A Virtual Machine Allocation Algorithm Based on Power-aware in Cloud Computing[J].,2014,24(10):88.
[20]孟蒙,茅苏. 基于云计算的可反馈负载均衡策略的研究[J].计算机技术与发展,2014,24(10):135.
 MENG Meng,MAO Su. Study on Feedback Load Balancing Strategy Based on Cloud Computing[J].,2014,24(10):135.

更新日期/Last Update: 2016-11-29