[1]黄曜[],许华虎[],欧阳杰臣[],等. 针对图像来源鉴别中支持向量机的研究[J].计算机技术与发展,2016,26(10):1-5.
 HUANG Yao[],XU Hua-hu[],OUYANG Jie-chen[],et al. Research on Support Vector Machines for Image Source Identification[J].,2016,26(10):1-5.
点击复制

 针对图像来源鉴别中支持向量机的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年10期
页码:
1-5
栏目:
智能、算法、系统工程
出版日期:
2016-10-10

文章信息/Info

Title:
 Research on Support Vector Machines for Image Source Identification
文章编号:
1673-629X(2016)10-0001-05
作者:
 黄曜[1]许华虎[2]欧阳杰臣[1]高珏[3]
 1.上海大学 计算机工程与科学学院;2.上海上大海润信息系统有限公司;3.上海大学 计算中心
Author(s):
 HUANG Yao[1] XU Hua-hu[2]OUYANG Jie-chen[1]GAO Jue[3]
关键词:
 图像盲取证支持向量机分类模型核函数核参数图像来源鉴别率
Keywords:
 blind image forensicsSVM classification modelkernel functionkernel parameterimage source identification rate
分类号:
TP31
文献标志码:
A
摘要:
 随着数码图像的普及,图像盲取证成为时下的研究热点之一,如何识别图像来源是其主要的研究内容。作为图像来源鉴别最关键的阶段,构造鉴别的支持向量机( SVM)分类模型直接影响最终的鉴别率。由于不同核函数以及核参数对分类器性能有着相异的影响,故分析对比了各种核函数,然后选取了细分效果更好的高斯径向基函数作为核函数。针对核参数选择问题,分析了各种核参数寻优算法,并通过实验验证了各个算法的效果,以及最终构造的分类模型的效果。实验结果表明,选用高斯径向基函数作为核函数,利用粒子群算法选出的核参数所构造的分类模型取得了最好的图像来源鉴别率。
Abstract:
 With the popularity of digital images,blind image forensics has become one of the hotspots nowadays. The main research con-tent of blind image forensics is how to identify the image source. As the most critical stage of image source identification,the SVM classi-fication model for identification directly affects the final identification rate. Because the different kernel function and kernel parameters has distinct effect on the performance of the classification model,the various kernel functions are analyzed and compared,then the Gaussian radial basis function with better subdivision is selected as the kernel function. In view of the kernel parameter selection,the various kernel parameter optimization algorithms are analyzed,and the effectiveness of each algorithm and the effect of the final classification model by experiments are verified. The results show that choosing Gaussian radial basis function as the kernel function,using the kernel parameters selected by particle swarm algorithm to construct the classification model will achieve the best image source identification rate.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(10):47.
[11]黄曜[],许华虎[],欧阳杰臣[],等. 基于混合特征提取的图像来源鉴别算法[J].计算机技术与发展,2016,26(04):11.
 HUANG Yao[],XU Hua-hu[],OUYANG Jie-chen[],et al. Image Source Identification Algorithm Based on Mixed Feature Extraction[J].,2016,26(10):11.

更新日期/Last Update: 2016-11-25