[1]田峰,朱雯君. 基于信干噪比模型的多跳认知网络速率优化[J].计算机技术与发展,2016,26(08):113-118.
 TIAN Feng,ZHU Wen-jun. Rate Optimization Based on SINR in Cognitive Radio Network[J].,2016,26(08):113-118.
点击复制

 基于信干噪比模型的多跳认知网络速率优化()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年08期
页码:
113-118
栏目:
应用开发研究
出版日期:
2016-08-10

文章信息/Info

Title:
 Rate Optimization Based on SINR in Cognitive Radio Network
文章编号:
1673-629X(2016)08-0113-06
作者:
 田峰朱雯君
 南京邮电大学 通信与信息工程学院
Author(s):
 TIAN FengZHU Wen-jun
关键词:
 多跳认知网络重构线性化技术信干噪比模型速率
Keywords:
 multi-hop cognitive radio networkRLTSINRrate
分类号:
TP39
文献标志码:
A
摘要:
 随着无线通信技术的迅速发展,频谱短缺问题日益突出。认知无线电技术作为缓解频谱供需矛盾的重要技术受到了广泛关注。文中综合研究了多跳认知网络的物理层、链路层及网络层的限制,以信干噪比( Signal to Interference plus Noise Ratio,SINR)模型下多跳认知网络的速率问题为优化目标,形成混合整数非线性规划( MINLP)问题。针对该问题,通过重构线性化技术( RLT)实现线性松弛,得到问题的最优解。仿真验证了该方法的有效性及多跳认知网络跨层设计对系统性能的影响,实现了认知网络速率优化的目标。
Abstract:
 With the rapid development of wireless communication,problem of spectrum scarcity is becoming more and more prominent. Cognitive radio network,as an important technology to ease the contradiction between supply and demand,has been widely followed. In this paper,the constraints of physical,link and network layers is researched comprehensively with objective of maximizing rate in cogni-tive radio networks under Signal to Interference plus Noise Ratio ( SINR) . The problem is formed of mixed integer nonlinear program. To solve the problem,a Reformulation Linearization Technique ( RLT) is adopted and optimal solution for it is obtained. Simulation demon-strates the efficacy of the solution procedure,offering the benefit for cross-layer design and achieving the goal of rate optimization for cognitive radio network.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(08):47.

更新日期/Last Update: 2016-09-29