[1]杨志勇,朱跃龙,万定生. 基于知识粒度的时间序列异常检测研究[J].计算机技术与发展,2016,26(07):51-54.
 YANG Zhi-yong,ZHU Yue-long,WAN Ding-sheng. Research on Time Series Anomaly Detection Based on Knowledge Granularity[J].,2016,26(07):51-54.
点击复制

 基于知识粒度的时间序列异常检测研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年07期
页码:
51-54
栏目:
智能、算法、系统工程
出版日期:
2016-07-10

文章信息/Info

Title:
 Research on Time Series Anomaly Detection Based on Knowledge Granularity
文章编号:
1673-629X(2016)07-0051-04
作者:
 杨志勇朱跃龙万定生
 河海大学 计算机与信息学院
Author(s):
 YANG Zhi-yongZHU Yue-longWAN Ding-sheng
关键词:
 时间序列知识粒度粗糙集异常检测
Keywords:
 time seriesknowledge granularityrough setanomaly detection
分类号:
TP31
文献标志码:
A
摘要:
 时间序列的异常检测多以相似性分析方法来处理,时间代价高昂。为减少异常检测的时间,文中围绕知识粒度方法进行研究与探讨。知识粒度在数据异常检测中应用广泛,但在时间序列的异常检测上应用较少。文中针对时间序列上下文相关异常(点)检测,提出利用知识粒度异常检测方法对于输入属性越多检测粒度越细的特性,来查找时间序列中的异常数据。实验证明,基于知识粒度的方法无需先验信息,在整个处理过程中无需事先分析历史数据,而是通过属性间的组合粒度来划分异常数据与正常数据,提高了异常检测的效率。知识粒度方法在不确定信息处理研究中的表现十分突出,文中将知识粒度在时间序列异常检测中进行应用尝试,为时间序列异常检测提供了一种新的思路。
Abstract:
 ost of the time series’ anomaly detections are processed with the similarity analysis,and their time complexity is rather high. In order to reduce the time of anomaly detection,it studies and discusses the method of knowledge granularity in this paper. Knowledge granularity is widely applied in the anomaly detection of data,but rarely used in anomaly detection on time series. In view of context de-pendent anomaly ( point) detection in time series,the knowledge-granularity-based anomaly detection is proposed to search the anoma-lous data in time series,in which the more the attributes are,the finer the detection granularity is. Experiments show that the method based on knowledge granularity does not require a priori information,partition of the abnormal data and normal data through the combination of the attributes without analysis of historical data previously,and the efficiency of anomaly detection has been improved. The knowledge granularity method is very prominent in the research of uncertain information processing. It tries to apply the knowledge granularity in the anomaly detection of time series in this paper,thus to provide a new approach for anomaly detection of time series.

相似文献/References:

[1]赵伟 梁循.互联网金融信息量与收益率波动关联研究[J].计算机技术与发展,2009,(12):1.
 ZHAO Wei,LIANG Xun.Research on Relationship Between Internet Financial Information and Fluctuation of Price - Earnings[J].,2009,(07):1.
[2]张虹 赵兵 钟华.基于小波多尺度的网络论坛话题热度趋势预测[J].计算机技术与发展,2009,(04):76.
 ZHANG Hong,ZHAO Bing,ZHONG Hua.Hot Trend Prediction of Network Forum Topic Based on Wavelet Multi - Resolution Analysis[J].,2009,(07):76.
[3]常毅 王加阳.时态信息系统转换方法研究[J].计算机技术与发展,2008,(07):15.
 CHANG Yi,WANG Jia-yang.Research on Method of Translating TIS to IS[J].,2008,(07):15.
[4]施尧 赵勇 杨雪洁 赵妹 张燕平 关有训 王克强.基于覆盖算法的大气质量预测[J].计算机技术与发展,2008,(07):190.
 SHI Yao,ZHAO Yong,YANG Xue-jie,et al.Application of Covering Algorithm to Prediction of Air Quality[J].,2008,(07):190.
[5]何星星 孙德山.模糊神经网络与SARIMA结合的时间序列预测模型[J].计算机技术与发展,2008,(08):61.
 HE Xing-xing,SUN De-shan.A Time Series Forecasting Model Using a Hybrid Fuzzy Neural Network and SARIMA[J].,2008,(07):61.
[6]兰妥 江弋 刘光生.基于Sas的时间序列缺失值处理方法比较[J].计算机技术与发展,2008,(10):43.
 LAN Tuo,JIANG Yi,LIU Guang-sheng.Comparison of Methods on Time Series' Missing Value Based on Sas[J].,2008,(07):43.
[7]查春生 倪志伟 倪丽萍 公维峰.基于相空间重构的股价时间序列相关性分析[J].计算机技术与发展,2010,(08):17.
 ZHA Chun-sheng,NI Zhi-wei,NI Li-ping,et al.Correlations Analysis Between Stock Index Time Serials Based on Reconstructed Phase Space[J].,2010,(07):17.
[8]贾瑞玉 王亮 王会颖.二维CVVT方法在时间序列分析中的应用研究[J].计算机技术与发展,2007,(05):160.
 JIA Rui-yu,WANG Liang,WANG Hui-ying.Research for Applications of 2D - CWT Approach in Time Series Analysis[J].,2007,(07):160.
[9]张诚 郑诚.基于时间的模糊关联规则挖掘[J].计算机技术与发展,2007,(07):60.
 ZHANG Cheng,ZHENG Cheng.Fuzzy Association Rules Mining over Time[J].,2007,(07):60.
[10]胡蓉.多输出支持向量回归及其在股指预测中的应用[J].计算机技术与发展,2007,(10):226.
 HE Rong.Application of Multi - Output Support Vector Regression in Stock Market Index Forecasting[J].,2007,(07):226.
[11]陈运文,吴飞,吴庐山,等. 基于异常检测的时间序列研究[J].计算机技术与发展,2015,25(04):166.
 CHEN Yun-wen,WU Fei,WU Lu-shan,et al. Research on Time Series Based on Anomaly Detection[J].,2015,25(07):166.
[12]王成国,邓仲元,陈海文,等.基于ARIMA模型的金融品种走势预测技术[J].计算机技术与发展,2015,25(07):11.
 WANG Cheng-guo,DENG Zhong-yuan,CHEN Hai-wen,et al. Financial Variety Trend Prediction Technology Based on ARIMA Model[J].,2015,25(07):11.
[13]程艳云,张守超,杨杨. 基于大数据的时间序列异常点检测研究[J].计算机技术与发展,2016,26(05):139.
 CHENG Yan-yun,ZHANG Shou-chao,YANG Yang. Research on Time Series Outlier Detection Based on Big Data[J].,2016,26(07):139.
[14]程艳云,张守超,杨杨. 基于大数据的时间序列预测研究与应用[J].计算机技术与发展,2016,26(06):175.
 CHENG Yan-yun,ZHANG Shou-chao,YANG Yang. Research and Application of Time Series Forecasting Based on Big Data[J].,2016,26(07):175.
[15]杨祎玥[],伏潜[],万定生[]. 基于深度循环神经网络的时间序列预测模型[J].计算机技术与发展,2017,27(03):35.
 YANG Yi-yue[],FU Qian[],WAN Ding-sheng[]. A Prediction Model for Time Series Based on Deep Recurrent Neural Network[J].,2017,27(07):35.
[16]李春生,宋佳,张可佳,等. 基于关联度分析的生产异常模式挖掘[J].计算机技术与发展,2017,27(09):124.
 LI Chun-sheng,SONG Jia,ZHANG Ke-jia,et al. Abnormal Production Pattern Mining Based on Relevancy Analysis LI Chun-sheng,SONG Jia,ZHANG Ke-jia,ZHANG Yong[J].,2017,27(07):124.
[17]贾瑞玉,王瑞. 基于EMD的时间序列相似性度量算法[J].计算机技术与发展,2017,27(11):71.
 JIA Rui-yu,WANG Rui. A Similarity Measure Algorithm for Time Series Based on EMD[J].,2017,27(07):71.

更新日期/Last Update: 2016-09-28