[1]吴哲[],刘孝星[],郑力新[],等. 一种L-M优化BP网络的茶叶茶梗分类方法[J].计算机技术与发展,2016,26(04):200-204.
 WU Zhe[],LIU Xiao-xing[],ZHENG Li-xin[],et al. A Tea and Tea-stalk Classification Method of L-M Optimized BP Network[J].,2016,26(04):200-204.
点击复制

 一种L-M优化BP网络的茶叶茶梗分类方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年04期
页码:
200-204
栏目:
应用开发研究
出版日期:
2016-04-10

文章信息/Info

Title:
 A Tea and Tea-stalk Classification Method of L-M Optimized BP Network
文章编号:
1673-629X(2016)04-0200-05
作者:
 吴哲[1]刘孝星[2]郑力新[1]周凯汀[2]
 1.华侨大学 工学院;2.华侨大学 信息科学与工程学院
Author(s):
 WU Zhe[1]LIU Xiao-xing[2] ZHENG Li-xin[1] ZHOU Kai-ting[2]
关键词:
 形态学特征L-M学习算法BP网络茶叶茶梗分类
Keywords:
 morphological featuresL-M learning algorithmBP networkclassification of tea and tea-stalk
分类号:
TP391.9
文献标志码:
A
摘要:
 传统的茶叶茶梗分选方法在特征选取方面存在着样本颜色特征提取单一的问题,以及现有的茶叶茶梗分类器普遍存在分类精度低、耗费时间长等问题。针对CCD相机采集的茶叶茶梗的数字图像,首先经过二值化、开运算、闭运算、样本图像去噪、图像分割等预处理过程,再根据茶叶茶梗样本形态学特征的差异,提取出圆形度、矩形度、延伸率、Hu二阶不变矩、最大内切圆与其面积比等5类区分度大、独立性好的特征,作为BP神经网络分类器的输入向量,并采用L-M( Leven-berg-Marquardt)学习算法对传统的BP神经网络分类器进行优化,用于茶叶茶梗的分类。实验和仿真结果表明,经过L-M算法优化的BP网络分类器对茶叶茶梗样本的分类精度高达95%,且耗时相对较少,是一种有效的茶叶茶梗分类方法。
Abstract:
 Traditional tea and tea-stalk sorting method exists problems that color feature extraction for sample is single in feature extrac-tion aspect and general classifier has low precision and large time consuming. In term of digital image of tea and tea stems collected by CCD camera,according to different shape features between them,firstly after binarization,open and close operation,sample image denois-ing,image segmentation and other pre-processing process,it extracts circularity,rectangularity,extensibility,Hu second-order moment invariants,and the ratio of maximum inscribed circle and its area,etc in this paper,which has great distinction and independence,as the input vector of BP ( Back-Propagation) neural network. It also applies L-M ( Levenberg-Marquardt) learning algorithm to optimize the traditional BP neural network for the classification of tea and tea stalk. Experiment and simulation results proves that the BP network clas-sifier optimized by L-M algorithm is as high as 98% on classification accuracy for tea and tea-stalk,and has relatively few time-consu-ming. It is an effective classification method of tea and tea-stalk.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(04):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(04):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(04):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(04):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(04):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(04):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(04):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(04):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(04):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(04):47.

更新日期/Last Update: 2016-06-17