[1]黄春华[] [],陈忠伟[],李石君[]. 贝叶斯决策树方法在招生数据挖掘中的应用[J].计算机技术与发展,2016,26(04):114-118.
 HUANG Chun-hua[][],CHEN Zhong-wei[],LI Shi-jun[]. Application of Bayesian Decision Tree Method in Admission Data Mining[J].,2016,26(04):114-118.
点击复制

 贝叶斯决策树方法在招生数据挖掘中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年04期
页码:
114-118
栏目:
应用开发研究
出版日期:
2016-04-10

文章信息/Info

Title:
 Application of Bayesian Decision Tree Method in Admission Data Mining
文章编号:
1673-629X(2016)04-0114-05
作者:
 黄春华[1] [2]陈忠伟[2] 李石君[1]
1. 武汉大学 计算机学院;2. 广西英华国际职业学院 工信学院
Author(s):
 HUANG Chun-hua[1][2]CHEN Zhong-wei[2] LI Shi-jun[1]
关键词:
 数据挖掘贝叶斯决策树分类招生数据报到预测
Keywords:
 data miningBayesian decision treeclassificationadmission dataregistration forecasting
分类号:
TP301.6
文献标志码:
A
摘要:
 文中首先简单介绍了贝叶斯决策树方法的基本思想,该方法结合了贝叶斯分类的先验信息方法和决策树分类的信息增益方法的优点,加入贝叶斯节点弥补了决策树不能处理具有二义性或存在缺失值数据的缺点。在此基础上,文中设计了一种基于朴素贝叶斯方法和ID3算法的贝叶斯决策树算法———NBDT-ID3算法,并给出了该算法的设计及分析过程。然后将该算法应用到高职招生数据挖掘中,对新生报到情况进行分析与预测,并在Matlab环境下进行了实验验证。实验结果表明,NBDT-ID3算法在付出一定时间代价的情况下,不仅可以获得更高的分类精度,而且在处理二义性、不完整或不一致数据方面具有更好的效果。
Abstract:
 It simply introduces the basic thought of Bayesian decision tree method in this paper,which takes advantage of the prior infor-mation method for Bayesian classification and the information gain method of decision tree,and makes up for the decision tree cannot handle the ambiguity data and the missing value by adding Bayesian node. On this basis, a Bayesian decision tree algorithm based on Na?ve Bayesian method and ID3 algorithm is presented named NBDT-ID3 algorithm. The algorithm process of the design and analysis is introduced. Then the algorithm is applied to higher vocational admission data mining,which analyzes and forecasts the new student regis-tration. It is tested and verified under the Matlab environment. The experimental results show that NBDT-ID3 algorithm not only can get higher classification accuracy but also behave well in handling the ambiguity,incomplete or incongruous data in the case of paying certain of time.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(04):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(04):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(04):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(04):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(04):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(04):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(04):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(04):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(04):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(04):113.
[11]李蓉,周维柏. 基于多特征选取和类完全加权的入侵检测[J].计算机技术与发展,2014,24(07):145.
 LI Rong,ZHOU Wei-bai. Intrusion Detection Based on Multiple Feature Selection and Class Fully Weighted [J].,2014,24(04):145.
[12]占美星[],杨颖[],杨磊[]. 基于树结构多重最小支持度的挖掘算法研究[J].计算机技术与发展,2014,24(08):45.
 ZHAN Mei-xing[],YANG Ying[],YANG Lei[]. Study on Mining Algorithm Based on Tree Structure Multiple Minimum Supports[J].,2014,24(04):45.
[13]于海平[],林晓丽[],刘会超[]. 基于数据挖掘的移动广告个性化推荐研究[J].计算机技术与发展,2014,24(08):234.
 YU Hai-ping[],LIN Xiao-li[],LIU Hui-chao[]. Research of Mobile Internet Advertising Personalized Recommendation Based on Data Mining[J].,2014,24(04):234.
[14]孙媛,黄刚. 基于Hadoop平台的C4.5算法的分析与研究[J].计算机技术与发展,2014,24(11):83.
 SUN Yuan,HUANG Gang. Analysis and Study of C4 . 5 Algorithm Based on Hadoop Platform[J].,2014,24(04):83.
[15]牛永洁,薛苏琴. 基于PDFBox抽取学术论文信息的实现[J].计算机技术与发展,2014,24(12):61.
 NIU Yong-jie,XUE Su-qin. Realization of Extraction of Academic Papers Information Based on PDFBox[J].,2014,24(04):61.
[16]郑超,高茂庭,吴爱华. 基于RFID及其路径约束的生产检查流程控制[J].计算机技术与发展,2015,25(02):225.
 ZHENG Chao,GAO Mao-ting,WU Ai-hua. Production Testing Process Control Based on RFID with Path Constraint[J].,2015,25(04):225.
[17]顾伟[][],傅德胜[][],蔡玮[]. 基于命题逻辑的关联规则挖掘算法[J].计算机技术与发展,2015,25(03):91.
 GU Wei[][],FU De-sheng[][],CAI Wei[]. Association Rules Mining Algorithm Based on Propositional Logic[J].,2015,25(04):91.
[18]陈运文,吴飞,吴庐山,等. 基于异常检测的时间序列研究[J].计算机技术与发展,2015,25(04):166.
 CHEN Yun-wen,WU Fei,WU Lu-shan,et al. Research on Time Series Based on Anomaly Detection[J].,2015,25(04):166.
[19]王晓鹏,武彤. 生产质量控制数据仓库模型设计与实现[J].计算机技术与发展,2015,25(06):181.
 WANG Xiao-peng,WU Tong. Design and Realization of Data Warehouse Model on Production Quality Control[J].,2015,25(04):181.
[20]王玉雷,李玲娟. 一种密度和划分结合的聚类算法[J].计算机技术与发展,2015,25(09):53.
 WANG Yu-le,LI Ling-juan. A Clustering Algorithm of Combination of Density and Division[J].,2015,25(04):53.

更新日期/Last Update: 2016-06-16