[1]范亚琼,燕雪峰,陈海燕. 基于改进离差最大化方法的梯形灰云评估模型[J].计算机技术与发展,2016,26(04):20-24.
 FAN Ya-qiong,YAN Xue-feng,CHEN Hai-yan. A Trapezoidal Gray Cloud Evaluation Model Based on Improved Deviation Maximization Weighting Method[J].,2016,26(04):20-24.
点击复制

 基于改进离差最大化方法的梯形灰云评估模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年04期
页码:
20-24
栏目:
智能、算法、系统工程
出版日期:
2016-04-10

文章信息/Info

Title:
 A Trapezoidal Gray Cloud Evaluation Model Based on Improved Deviation Maximization Weighting Method
文章编号:
1673-629X(2016)04-0020-05
作者:
 范亚琼;燕雪峰;陈海燕
 南京航空航天大学 计算机科学与技术学院
Author(s):
 FAN Ya-qiong;YAN Xue-feng;CHEN Hai-yan
关键词:
 梯型灰云聚类改进离差最大化赋权法大气环境质量灵敏度分析
Keywords:
 trapezoidal gray cloud clusteringimproved deviation maximum weight methodatmospheric environment qualitysensitivity analysis
分类号:
TP311
文献标志码:
A
摘要:
 针对多方案多指标中离差最大化赋权法不能充分体现指标权重在不同方案中的差别,而层次分析法能够通过指标之间的两两比较获得指标之间的相对重要性,结合层次分析法的特性对离差最大化赋权法进行改进;同时,由于在某些领域实际监测数据所能提供的信息具有不完全性和不确知性,而云理论是一种处理模糊性和随机性信息的有效工具,结合具体应用场景,提出了基于梯形云模型的白化权函数,建立了基于改进离差最大化赋权法的梯形灰云聚类评价模型。应用梯形灰云聚类评估模型对福州市近十年的大气环境质量进行评价,实验表明该模型评价结果符合客观实际,通过灵敏度分析验证了此模型的可行性和实用性。梯形灰云聚类评价模型为综合评价问题提供了一种新的有效途径。
Abstract:
 Due to the problem of the deviation maximization weighting method that can’ t fully embody the difference of the weight of the index in different schemes and the characteristics of the method of the AHP that can obtain the relative importance of the index by the comparison,the AHP is introduced to improve the maximum weight of the deviation. Meanwhile,owing to the incomplete and uncertain of the amount of information provided by the monitoring data in some areas and the property of cloud theory which is an effective tool for dealing with fuzzy and random information,the whitening weight function is improved by the introduction of the trapezoid cloud model. Thus,a trapezoidal gray cloud clustering evaluation model based on the maximum weight of dispersion is established in this paper. The at-mospheric environmental quality of Fuzhou city during the last ten years is assessed by using the improved trapezoidal gray cloud cluster assessment model. Examples show that the results of the model are consistent with the objective reality. The feasibility and practicality of the model are verified by sensitivity analysis. It is the trapezoidal gray cloud clustering evaluation model that provides a new and effective way for the comprehensive evaluation.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(04):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(04):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(04):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(04):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(04):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(04):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(04):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(04):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(04):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(04):47.

更新日期/Last Update: 2016-06-16