[1]潘春花,孙燕,朱存. 太阳黑子活动周期特征的神经网络和小波分析[J].计算机技术与发展,2016,26(03):158-161.
 PAN Chun-hua,SUN Yan,ZHU Cun. BP Neural Network and Wavelet Analysis of Period of Sunspot Activity[J].,2016,26(03):158-161.
点击复制

 太阳黑子活动周期特征的神经网络和小波分析()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年03期
页码:
158-161
栏目:
应用开发研究
出版日期:
2016-03-10

文章信息/Info

Title:
 BP Neural Network and Wavelet Analysis of Period of Sunspot Activity
文章编号:
1673-629X(2016)03-0158-04
作者:
 潘春花孙燕朱存
 青海民族大学 计算机学院
Author(s):
 PAN Chun-huaSUN Yan ZHU Cun
关键词:
 太阳黑子数BP神经网络小波分自相关周期鲁棒性
Keywords:
 sunspot numbersBP neural networkwavelet analysisautocorrelationcyclerobustness
分类号:
TP391
文献标志码:
A
摘要:
 太阳黑子数是描述太阳活动水平的主要指标,太阳活动直接影响日地环境。依据前人对太阳黑子数的观测资料,采用BP神经网络及小波分析和自相关相结合的方法,分析了1770-1869年的太阳黑子数年均值,得出了太阳黑子存在11-12年周期的结论,并对该算法及噪声鲁棒性进行了仿真。实验结果表明,该算法对研究太阳活动的本质规律是有效的。两种方法与其他方法,如自相关法、功率谱法等,进行了相比,不仅得出与实际一致的结论,而且对噪声有较强的鲁棒性,这对含噪信号的分析研究是很有意义的。
Abstract:
 The sunspot number is the main indicator of the level of solar activity,solar activity directly affects the daily environment. Based on the sunspot number observation data of the predecessor,using BP neural network and wavelet analysis and self integrating meth-od,the 1770-1869 sunspot number mean is analyzed,it is concluded that the sunspots are 11-12 year cycle,and the algorithm and its noise robustness is simulated. The experimental results show that the algorithm is effective for the essential rule of solar activity. Two methods with other methods,such as self correlation method,the power spectrum method,are compared to not only draw the practical conclusions but also have the strong robustness for noise,which is very significant for noise signal analysis.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(03):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(03):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(03):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(03):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(03):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(03):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(03):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(03):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(03):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(03):47.

更新日期/Last Update: 2016-06-14