[1]郭迪,沈洋洋,尹兵. 经验模式分解端点效应抑制方法的研究[J].计算机技术与发展,2016,26(03):89-92.
 GUO Di,SHEN Yang-yang,YIN Bing. Research on Method for End Effects Reduction of Empirical Mode Decomposition[J].,2016,26(03):89-92.
点击复制

 经验模式分解端点效应抑制方法的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年03期
页码:
89-92
栏目:
智能、算法、系统工程
出版日期:
2016-03-10

文章信息/Info

Title:
 Research on Method for End Effects Reduction of Empirical Mode Decomposition
文章编号:
1673-629X(2016)03-0089-04
作者:
 郭迪沈洋洋尹兵
 南京邮电大学 电子科学与工程学院
Author(s):
 GUO DiSHEN Yang-yangYIN Bing
关键词:
 经验模式分解延拓端点效应镜像法波形特征匹配法
Keywords:
 EMDextendingend effectmirror methodwaveform feature matching method
分类号:
TP301
文献标志码:
A
摘要:
 针对经验模式分解法( Empirical Mode Decomposition,EMD)中的端点效应严重影响算法精度的情况,为了减小端点效应,文中提出一种新的先匹配后镜像延拓方法。该方法借鉴镜像对称延拓与波形特征匹配延拓,将信号先进行波形特征匹配延拓再进行镜像对称延拓。利用仿真数据对先匹配后镜像延拓的方法进行了验证,并与原有几种延拓方法在不同评价指标下进行了对比。结果表明,先匹配再镜像延拓后,信号的包络线发生畸变最小,同时新方法分解得到的IMF精度较高,正交性好。先匹配后镜像延拓方法提高了经验模式分解的精度,能更有效地抑制经验模式分解法中的端点效应。
Abstract:
 The precision of Empirical Mode Decomposition ( EMD) is reduced greatly by its end effects,so a new end extending method combining the waveform feature matching extending method and mirror extending method is presented. The waveform feature matching extending method and mirror extending are used for reference in this new method,the signal is extended by waveform feature matching method at first and then extended by mirror method. A simulation signal is applied to test the performance of the new method,and a com-parison under different evaluating indicators between the new method and old methods is made and analyzed. The result shows that the signal envelope has minimum distortion,at the same time,the IMF has high precision and good orthogonality decomposed by new meth-od. The proposed improved extending method can improve the precision of EMD and restrain the end effect effectively.

相似文献/References:

[1]杨玫 郭天杰 陈青华.基于经验模式分解的时间序列预测方法研究[J].计算机技术与发展,2011,(07):25.
 YANG Mei,GUO Tian-jie,CHEN Qing-hua.Research on Prediction of Time Series Based on EMD[J].,2011,(03):25.
[2]赵伟.一种改进的网络流量预测模型研究[J].计算机技术与发展,2013,(04):20.
 ZHAO Wei.Research on an Improved Prediction Model of Network Traffic[J].,2013,(03):20.
[3]程颖博,郭宇春.基于预测的无线Mesh网络多链路切换机制研究[J].计算机技术与发展,2013,(08):35.
 CHENG Ying-bo,GUO Yu-chun.Research on Prediction-based Multilink Handoff Mechanism in Wireless Mesh Network[J].,2013,(03):35.
[4]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(03):1.
[5]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(03):5.
[6]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(03):13.
[7]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(03):21.
[8]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(03):25.
[9]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(03):29.
[10]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(03):34.

更新日期/Last Update: 2016-06-12