[1]翟社平,李威,李炀. 人体特征检测算法的设计与实现[J].计算机技术与发展,2016,26(03):44-46.
 ZHAI She-ping,LI Wei,LI Yang. Design and Implementation of Human Characteristics Detection Algorithm[J].,2016,26(03):44-46.
点击复制

 人体特征检测算法的设计与实现()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年03期
页码:
44-46
栏目:
智能、算法、系统工程
出版日期:
2016-03-10

文章信息/Info

Title:
 Design and Implementation of Human Characteristics Detection Algorithm
文章编号:
1673-629X(2016)03-0044-03
作者:
 翟社平李威李炀
 西安邮电大学 计算机学院
Author(s):
 ZHAI She-pingLI WeiLI Yang
关键词:
 现场可编程逻辑门阵列支持向量机Adaboost 分类器
Keywords:
 FPGAsupport vector machinesAdaboostclassifier
分类号:
TP391
文献标志码:
A
摘要:
 人体特征检测是特征识别技术的基础,特征检测技术运用到诸多领域,从刑侦领域的人脸检测到手机应用领域的指纹解锁都有涉及。为了实现人体特征检测算法的分析与研究,在现场可编程逻辑门阵列平台中,提出一种基于SAda-boost的人体特征检测算法。该算法结合了支持向量机和Adaboost分类器算法的优点,实现人体特征图像的降维处理,并对图像进行分类处理,实现人体特征元素的检测。整个设计基于ZedBoard硬件平台,该平台具有较强的可重构性和并行处理的能力,完成了人体特征图像检测算法的设计与实现,实现了对人体特征图像中的人脸、人眼、人体框架3种人体元素的检测。通过对比分析实验结果,验证了该算法的有效性。
Abstract:
 Human feature detection is the basis of feature recognition technology which has been applied to many areas,from the face of criminal investigation to fingerprint unlock in the field of mobile application is involved. In order to achieve the analysis and study of hu-man characteristics detection algorithm,in platform on field-programmable gate array,a body feature detection algorithm based on SAda-boost is presented. The algorithm combines the advantages of SVM and Adaboost classifier algorithm to reduce the dimension of human characteristics and to achieve the detection of human characteristic elements by image classification processing. Entire design is based on ZedBoard,which has a strong ability to reconfigurable and parallel processing,completing the design and implementation of human fea-tures image detection algorithm,realization of detection for human body elements,including face,eye,and human framework. Through comparative analysis of the experimental results,the validity of the algorithm is verified.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(03):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(03):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(03):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(03):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(03):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(03):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(03):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(03):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(03):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(03):47.

更新日期/Last Update: 2016-06-08