[1]谢骊玲,宋彦斌,杨坦,等. 求解车辆路径问题的改进MMAS算法[J].计算机技术与发展,2016,26(03):27-30.
 XIE Li-ling,SONG Yan-bin,YANG Tan,et al. An Improved MMAS for Vehicle Routing Problem[J].,2016,26(03):27-30.
点击复制

 求解车辆路径问题的改进MMAS算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
26
期数:
2016年03期
页码:
27-30
栏目:
智能、算法、系统工程
出版日期:
2016-03-10

文章信息/Info

Title:
 An Improved MMAS for Vehicle Routing Problem
文章编号:
1673-629X(2016)03-0027-04
作者:
 谢骊玲宋彦斌杨坦骆其伦
 华南师范大学 数学科学学院
Author(s):
 XIE Li-ling;SONG Yan-bin;YANG Tan;LUO Qi-lun
关键词:
 车辆路径问题优化算法蚁群算法最大-最小蚂蚁系统信息素更新
Keywords:
 VRPoptimization algorithmant colony algorithmMMASpheromone updating
分类号:
TP301.6
文献标志码:
A
摘要:
 最大-最小蚂蚁系统( MMAS)只在最优解对应的路径上更新信息素,有效地利用了最优解,但容易导致搜索过早停滞。文中分析了MMAS在求解车辆路径问题( VRP)时的表现,针对其容易陷入局部最优解、全局搜索能力差、后期收敛速度慢等不足提出改进,给出一种新的信息素更新策略,动态改变挥发系数的数值,并在较优的几条路线上进行信息素更新,从而在加速算法收敛的同时提高全局搜索能力,避免过早停滞。 VRP仿真实验结果表明,改进后的算法稳定性好,收敛速度比原始MMAS算法有明显的提高。
Abstract:
 To exploit the best solutions found during an iteration or during the run of the algorithm,Max-Min Ant System ( MMAS) al-lows the ant on the best solution to heighten the pheromone. Unfortunately,it will lead to the premature stagnation of the search. By ana-lyzing the performance of MMAS in Vehicle Routing Problem (VRP),in order to avoid getting a local optimum solution,poor global search optimization ability,and slow convergence rate,a new strategy for pheromone updating is presented. It changes the value of the volatilization coefficients dynamically and updates the pheromones on the best ways,thus accelerating convergence and avoiding prema-ture stagnation. The simulation experiments of the VRP show that the stability and convergence rate of the proposed algorithm is improved significantly compared with the basic MMAS.

相似文献/References:

[1]赵传信 张雪东 季一木[].改进的粒子群算法在VRP中的应用[J].计算机技术与发展,2008,(06):240.
 ZHAO Chuan-xin,ZHANG Xue-dong,JI Yi-mu.Application of Improved Particle Swarm Optimization in VRP[J].,2008,(03):240.
[2]邓伟林 胡桂武.一种求解离散优化问题的粒子群算法[J].计算机技术与发展,2012,(05):116.
 DENG Wei-lin,HU Gui-wu.A Particle Swarm Algorithm for Discrete Optimization Problem[J].,2012,(03):116.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(03):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(03):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(03):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(03):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(03):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(03):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(03):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(03):38.
[11]殷龙,衡红军. 基于最邻近算法的机场特种车辆调度应用研究[J].计算机技术与发展,2016,26(07):151.
 YIN Long,HENG Hong-jun. Research on Application of Airport Special Vehicles Scheduling Based on Nearest Neighbors Algorithm[J].,2016,26(03):151.

更新日期/Last Update: 2016-05-24