[1]贺永兴[] [],杨瑞[],唐伟[],等. 基于重构变异算子遗传算法的研究[J].计算机技术与发展,2015,25(12):101-104.
 HE Yong-xing[][],YANG Rui[],TANG Wei[],et al. Research on Genetic Algorithm Based on Reconstruction Mutation Operator[J].,2015,25(12):101-104.
点击复制

 基于重构变异算子遗传算法的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年12期
页码:
101-104
栏目:
智能、算法、系统工程
出版日期:
2015-12-10

文章信息/Info

Title:
 Research on Genetic Algorithm Based on Reconstruction Mutation Operator
文章编号:
1673-629X(2015)12-0101-04
作者:
 贺永兴[1] [2]杨瑞[2] 唐伟[2] 欧新良[3]
 1.海南省气象信息中心;2.湖南工业大学 计算机与通信学院;3.长沙学院 计算机科学与技术系
Author(s):
 HE Yong-xing[1][2] YANG Rui[2] TANG Wei[2] OU Xin-liang[3]
关键词:
 遗传算法遗传早熟重构变异算子遗传算法双变异率遗传算法路由选择局部最优解
Keywords:
 genetic algorithmgenetic prematureRMOGA dual mutation genetic algorithmrouting selectionlocal optimal
分类号:
TP391
文献标志码:
A
摘要:
 针对遗传算法存在早熟和局部搜索能力差的缺点,提出重构变异算子遗传算法( Reconstruction Mutation Operator Genetic algorithm,RMOGa). 该算法由速成算子和自适应算子组成. 首先,通过速成算子来平衡变异算子和交叉算子在遗传算法中的地位,以此来改善遗传算法中的早熟现象;其次,采用自适应算子来保留遗传过程中适应度大的个体,从而增强局部搜索能力;最后,引入"路由判断冶的方法来加快算法的收敛速度. 实验过程使用MaTLaB 7. 0仿真软件,选取四组典型的测试函数,采用基本遗传算法( Simple Genetic algorithms,SGa)、双变异率遗传算法( Double Mutation Genetic algo-rithm,DMGa)以及文中提出的基于重构变异算子遗传算法(RMOGa),分别对测试函数在收敛精度上进行对比. 结果表明,RMOGa算法能很好地解决遗传算法早熟与陷入局部最优解的问题.
Abstract:
 For the problem of genetic algorithm in premature and poor local search capability,a Reconstruction Mutation Operator Genetic Algorithm ( RMOGA) is proposed. It consists of two parts:crash operator and adaptive operator. Firstly,use the crash operator to balance the proportion of mutation operator and cross operator in genetic algorithm,which can improve the property of premature in the genetic al-gorithm. Secondly,suitable elements are selected through the adaptive operator,which can enhance the local search capability of the algo-rithm. Finally,a routing method is introduced into the algorithm,which can be used to accelerate the convergence speed. The software of MATLAB 7. 0 is used in the simulation,all the algorithms of the Simple Genetic Algorithms (SGA),the Double Mutation Genetic Algo-rithm ( DMGA) ,RMOGA,have been adopted individually to test four groups of typical function and compare the effect of convergence. Experimental results show that the RMOGA algorithm presented in this paper is efficient for the problem of genetic algorithm in premature and local optimization.

相似文献/References:

[1]冯智明,苏一丹,覃华,等.基于遗传算法的聚类与协同过滤组合推荐算法[J].计算机技术与发展,2014,24(01):35.
 FENG Zhi-ming,SU Yi-dan,QIN Hua,et al.Recommendation Algorithm of Combining Clustering with Collaborative Filtering Based on Genetic Algorithm[J].,2014,24(12):35.
[2]余晓光 严洪森 殷乾坤.基于Flexsim的车间调度优化[J].计算机技术与发展,2010,(03):44.
 YU Xiao-guang,YAN Hong-sen,YIN Qian-kun.Workshops Scheduling Optimization Based on Flexsim Simulation[J].,2010,(12):44.
[3]贺计文 宋承祥 刘弘.基于遗传算法的八数码问题的设计及实现[J].计算机技术与发展,2010,(03):105.
 HE Ji-wen,SONG Cheng-xiang,LIU Hong.Design and Implementation of Eight Puzzle Problem Based on Genetic Algorithms[J].,2010,(12):105.
[4]沈珏萍 庄亚明.基于Agent的二级供应链企业自动谈判研究[J].计算机技术与发展,2010,(03):121.
 SHEN Jue-ping,ZHUANG Ya-ming.A Research for Company Automatic Negotiation in Secondary Supply Chain Based on Agent[J].,2010,(12):121.
[5]张磊 王晓军.基于遗传算法的业务流程测试[J].计算机技术与发展,2010,(03):155.
 ZHANG Lei,WANG Xiao-jun.Test of Business Process Based on Genetic Algorithm[J].,2010,(12):155.
[6]曹道友 程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44.
 CAO Dao-you,CHENG Jia-xing.A Genetic Algorithm Based on Modified Selection Operator and Crossover Operator[J].,2010,(12):44.
[7]范维博 周俊 许正良.应用遗传算法求解第一类装配线平衡问题[J].计算机技术与发展,2010,(02):194.
 FAN Wei-bo,ZHOU Jun,XU Zheng-liang.Appication of Genetic Algorithm to Assembly Line Balancing[J].,2010,(12):194.
[8]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(12):9.
[9]余晓光 严洪森.基于禁忌搜索遗传混合算法的装配线平衡[J].计算机技术与发展,2010,(05):5.
 YU Xiao-guang,YAN Hong-sen.Assembly Line Balancing Based on Tabu Search and Genetic Hybrid Algorithm[J].,2010,(12):5.
[10]黄永聪 张旭[] 吴义纯 吴琦 程家兴.改进的径向基函数网络的研究及应用[J].计算机技术与发展,2010,(05):158.
 HUANG Yong-cong,ZHANG Xu,WU Yi-chun,et al.Research and Application of Improved Genetic Algorithm-Based RBFANN[J].,2010,(12):158.
[11]汤亚玲,黄华,程泽凯. 基于自适应遗传神经网络的银行客户分类研究[J].计算机技术与发展,2014,24(07):192.
 TANG Ya-ling,HUANG Hua,CHENG Ze-kai. Research on Classification of Bank Customers Based on Adaptive GA-BP Algorithm[J].,2014,24(12):192.
[12]赵礼峰,王小龙. 图的Steiner最小树问题的混合遗传算法[J].计算机技术与发展,2014,24(10):110.
 ZHAO Li-feng,WANG Xiao-long. Hybrid Genetic Algorithm of Graphical Steiner Tree Problem[J].,2014,24(12):110.
[13]杨思燕[],陈为胜[]. 基于数据同化的图像融合方法研究[J].计算机技术与发展,2014,24(11):69.
 YANG Si-yan[],CHEN Wei-sheng[]. Research on Image Fusion Method Based on Data Assimilation[J].,2014,24(12):69.
[14]李圆芳,樊玮. 基于遗传算法的航材库存控制优化模型[J].计算机技术与发展,2014,24(11):186.
 LI Yuan-fang,FAN Wei. Optimization Model of Aviation Spares Inventory Control Based on Genetic Algorithm[J].,2014,24(12):186.
[15]李利杰[],张君华[],熊伟清[],等. 一种改进的支持向量机模型优化算法[J].计算机技术与发展,2014,24(12):114.
 LI Li-jie[],ZHANG Jun-hua[],XIONG Wei-qing[],et al. An Improved Algorithm for Model Optimization of Support Vector Machine[J].,2014,24(12):114.
[16]唐启涛. 基于改进的遗传算法的智能组卷算法研究[J].计算机技术与发展,2014,24(12):241.
 TANG Qi-tao. Research on Intelligent Test Paper Generating Algorithm Based on Improved Genetic Algorithm[J].,2014,24(12):241.
[17]张方舟,王徐研,郝庆辉. 基于遗传分形编码的嵌入式小波图像编码算法[J].计算机技术与发展,2015,25(01):128.
 ZHANG Fang-zhou,WANG Xu-yan,HAO Qing-hui. Embedded Wavelet Image Coding Algorithm Based on a Genetic Fractal Coding [J].,2015,25(12):128.
[18]陈桂林,王生光,徐静妹,等. 基于GA和组合核的SVM入侵检测算法[J].计算机技术与发展,2015,25(02):148.
 CHEN Gui-lin,WANG Sheng-guang,XU Jing-mei,et al. Intrusion Detection Algorithm of SVM Based on GA and Composed Kernel Function[J].,2015,25(12):148.
[19]秦军[],戴新华[],童毅[],等. 基于MapReduce的SVM分类算法研究[J].计算机技术与发展,2015,25(06):87.
 QIN Jun[],DAI Xin-hua[],TONG Yi[],et al. Research on SVM Classification Algorithm Based on MapReduce[J].,2015,25(12):87.
[20]严宏[][]. 教学资源配置优化中遗传算法的应用与改进[J].计算机技术与发展,2016,26(03):130.
 YAN Hong[][]. Application and Improvement of Genetic Algorithm for Optimization in Allocating Teaching Resources[J].,2016,26(12):130.

更新日期/Last Update: 2016-01-29