[1]沈玲[],王年[]. 基于图的谱系数夹角的特征点匹配[J].计算机技术与发展,2015,25(12):68-71.
 SHEN Ling[],WANG Nian[]. Feature Points Matching Based on Angle between Spectral Coefficient of Images[J].,2015,25(12):68-71.
点击复制

 基于图的谱系数夹角的特征点匹配()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年12期
页码:
68-71
栏目:
智能、算法、系统工程
出版日期:
2015-12-10

文章信息/Info

Title:
 Feature Points Matching Based on Angle between Spectral Coefficient of Images
文章编号:
1673-629X(2015)12-0068-04
作者:
 沈玲[1] 王年[2]
1. 安徽新华学院;2.安徽大学 计算智能与信号处理教育部重点实验室
Author(s):
 SHEN Ling[1] WANG Nian[2]
关键词:
 谱系数夹角Laplace矩阵特征点匹配
Keywords:
 graphspectral coefficient angleLaplace matrixfeature point matching
分类号:
TP301.6
文献标志码:
A
摘要:
 提出一种用图的谱系数夹角特征描述图像几何结构的特征点匹配算法. 首先通过对两幅待匹配的图像分别构造高斯权Laplace矩阵,并进行奇异值分解( Singular Value Decomposition,SVD)以获得其特征向量,然后由特征向量计算各分量间夹角的余弦并构造对称矩阵,最后对其进行奇异值分解. 根据分解结果构造出两幅匹配图像特征点间能够反映其匹配程度的关系矩阵,从而由该关系矩阵实现特征点间的匹配. 分别对模拟、真实及合成数据图像进行实验对比,说明了文中算法的有效性和可行性.
Abstract:
 An algorithm for images features points matching by representing geometric structure of images based on the angle between spectral coefficient vectors was proposed. The algorithm defined Gaussian-weighted Laplacian matrices for the feature points of two ima-ges respectively,obtaind the eigenvectors based on the result which was gotten by the singular value decomposition on the two matrices. Gained a symmetric matrix with the cosine value of the angle between the weight. Then with the result of the decomposition of the sym-metric matrix,get a relationship matrix which denoted the matching degree among feature points. Finally,the algorithm obtained feature points matching of the two images with the relationship matrixes. Experiments on analog images,real-world images and synthetic data demonstrate the effectiveness and feasibility of the approach.

相似文献/References:

[1]李云 傅秀芬 何杰光 林茜卡.求极大独立集的程序实现研究[J].计算机技术与发展,2008,(09):64.
 LI Yun,FU Xiu-fen,HE Jie-guang,et al.Procedures Research of Maximal Independent Sets[J].,2008,(12):64.
[2]郑文静,李雷.基于图的组合半监督SVM聚类核算法研究[J].计算机技术与发展,2014,24(05):109.
 ZHENG Wen-jing,LI Lei.Research on Combined Semi-supervised SVM Cluster Kernel Algorithm Based on Graph[J].,2014,24(12):109.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(12):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(12):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(12):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(12):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(12):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(12):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(12):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(12):38.
[11]郑文静,李雷. 基于聚类核的半监督情感分类算法研究[J].计算机技术与发展,2016,26(12):87.
 ZHENG Wen-jing,LI Lei. Research on Semi-supervised Sentiment Classification Based on Cluster Kernel[J].,2016,26(12):87.

更新日期/Last Update: 2016-01-28