[1]叶超. 基于归一化割的血吸虫卵图像分割[J].计算机技术与发展,2015,25(11):27-31.
 YE Chao. Segmentation of Schistosome Eggs Image Based on Normalized Cut[J].,2015,25(11):27-31.
点击复制

 基于归一化割的血吸虫卵图像分割()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年11期
页码:
27-31
栏目:
智能、算法、系统工程
出版日期:
2015-11-10

文章信息/Info

Title:
 Segmentation of Schistosome Eggs Image Based on Normalized Cut
文章编号:
1673-629X(2015)11-0027-05
作者:
 叶超
 南京航空航天大学 计算机科学与技术学院
Author(s):
 YE Chao
关键词:
 医学图像血吸虫卵图像分割归一化割
Keywords:
 medical imageschistosome eggsimage segmentationnormalized cut
分类号:
TP391.41
文献标志码:
A
摘要:
 显微镜下识别血吸虫卵是一件费时费力的工作,常常因为检测人员疲劳、注意力不集中等原因导致血吸虫病的误检和漏检.传统的血吸虫卵识别系统,图像分割方法只是通过单一的阈值分割的方式来处理血吸虫卵图像,往往误诊率、漏检率较高,在血吸虫病的诊断中作用很小甚至有副作用,因此对图像分割算法进行改进变得很有必要.文中在此背景下进行研究,针对血吸虫卵图像的分割提出了改进的归一化割算法.采用灰度权值矩阵描述像素之间的关系,从而避免了特征系统的大量运算,同时结合了先验知识,根据图像自身的特点自动计算最优分割子图数,使得分割结果更加精确.实验结果表明,该分割算法比经典的阈值分割算法分割更加精确,并且运行速度快.
Abstract:
 It is a laborious work to identify the schistosome eggs under microscope. Because of fatigue testing and inattention,testing per-sonnel often causes false and leak detection. Traditional recognition system’ s image segmentation method is simply using a single thresh-old,and the detection result is not satisfied normally. It is almost useless in the diagnosis of schistosome. So to improve the image segmen-tation algorithm becomes very necessary. In this paper,under the background of the study,in view of the schistosome eggs image segmen-tation,an improved normalized cut algorithm is proposed. Use gray weighting matrix to describe the relationship between the pixel,so as to avoid the operation of characteristics system,at the same time,combined with prior knowledge,according to the characteristics of the image itself automatically calculates the optimal segmentation figure number,which make segmentation result more accurate. The experi-mental result shows that the algorithm runs faster with higher accuracy than typical threshold segmentation algorithm.

相似文献/References:

[1]罗棻.一种简单的医学图像刚体配准方法[J].计算机技术与发展,2009,(04):210.
 LUO Fen.A Simple Method for Medical Image of Rigid Registration[J].,2009,(11):210.
[2]刘晨 张东.边缘检测算子研究及其在医学图像中的应用[J].计算机技术与发展,2006,(08):128.
 LIU Chen,ZHANG Dong.Analysis of Edge Detection Operators and Application in Medical Image[J].,2006,(11):128.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[11]贺东霞,李竹林,王静. 几种滤波算法在医学图像上的实现[J].计算机技术与发展,2014,24(08):165.
 HE Dong-xia,LI Zhu-lin,WANG Jing. Implementation of Several Filtering Algorithms in Medical Image[J].,2014,24(11):165.
[12]林晓雷. 医学影像仿真扫描工作站的设计与实现[J].计算机技术与发展,2015,25(01):187.
 LIN Xiao-lei. Design and Implementation of Medical Imaging Simulation Scanning Workstation[J].,2015,25(11):187.
[13]徐国雄[],张骁[],胡进贤[],等. 基于阈值分割和轮廓提取的图像边缘检测算法[J].计算机技术与发展,2015,25(12):64.
 XU Guo-xiong[],ZHANG Xiao[],HU Jin-xian[],et al. Medical Cell Edge Detection Algorithm Based on Threshold Segmentation and Contour Extraction[J].,2015,25(11):64.

更新日期/Last Update: 2015-12-18