[1]陈支泽,荆晓远,陈芸,等. 基于改进Gabor滤波器的多模态特征融合技术[J].计算机技术与发展,2015,25(10):107-110.
 CHEN Zhi-ze,JING Xiao-yuan,CHEN Yun,et al. Multi-modal Features Fusion Technology Based on Improved Gabor Filter[J].,2015,25(10):107-110.
点击复制

 基于改进Gabor滤波器的多模态特征融合技术()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年10期
页码:
107-110
栏目:
智能、算法、系统工程
出版日期:
2015-10-10

文章信息/Info

Title:
 Multi-modal Features Fusion Technology Based on Improved Gabor Filter
文章编号:
1673-629X(2015)10-0107-04
作者:
 陈支泽荆晓远陈芸朱阳平
 南京邮电大学 自动化学院
Author(s):
 CHEN Zhi-zeJING Xiao-yuanCHEN YunZHU Yang-ping
关键词:
 Gabor滤波器曲率特性多模态学习特征提取
Keywords:
 Gabor filtercurvature responsemulti-modal learningfeature extraction
分类号:
TP301
文献标志码:
A
摘要:
 传统的Gabor滤波器具有良好的方向特性和尺度特性,然而传统的Gabor滤波器不能提取图像中弯曲区域的局部信息。文中首先对传统的Gabor滤波器加以改进,使其在具有方向和尺度特性的同时具有良好的曲率响应特性,因而对于图像中弯曲的区域能够提取丰富的边缘特征。图像在不同的Gabor滤波器特征下有不同的表现形式,利用Gabor滤波器丰富的多特征信息,可以形成包含丰富信息的多个模态。然后文中提出一个多模态学习( Multi-modal Learning)框架。在此框架内,样本集合被投影到一个公共的鉴别空间内,在这个空间里,来自不同模态的同类样本相互聚集,异类样本相互散开。文中提出的多模态学习框架能很好地利用Gabor滤波器的多特征信息,PolyU掌纹数据库和AR彩色人脸数据库的实验结果表明了该方法的有效性。
Abstract:
 Traditional Gabor filter has good characteristics of direction and scale,but cannot extract the local information of bending area for image. Firstly,improve traditional Gabor filter to make it has good curvature response based on good characteristics of direction and scale. So for the image area can extract the edge of the rich characteristics of bending. After filtering with different characteristics of Gabor filter,images have more abundant characteristic information,and contain abundant information of multiple modes. Then propose a Multi-Modal Learning ( MML) framework,within this framework,samples are projected onto a common space. In this common space,samples in same class from multiple modals are close to each other,while samples in different classes from multiple modals are far away from each other. Multi-modal learning framework proposed in this paper can make good use of Gabor filter characteristic information. Experimental results with PolyU palmprint database and AR color data set show the effectiveness of the method in this paper.

相似文献/References:

[1]李春林 杨洁 杨世兴.造影图像中冠状动脉的增强方法研究[J].计算机技术与发展,2010,(03):188.
 LI Chun-lin,YANG Jie,YANG Shi-xing.Study on Approach to Enhance Coronary Artery in Angiograms[J].,2010,(10):188.
[2]陈静 罗斌 詹小四.基于Gabor滤波的指纹图像增强算法[J].计算机技术与发展,2008,(04):124.
 CHEN Jing,LUO Bin,ZHAN Xiao-si.Fingerprint Image Enhancement Algorithm Based on Gabor Filter[J].,2008,(10):124.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.

更新日期/Last Update: 2015-11-13