[1]段晓杰,张绍成,曲大鹏,等. 基于混沌和小波变换系数的数字图像水印算法[J].计算机技术与发展,2015,25(10):34-37.
 DUAN Xiao-jie,ZHANG Shao-cheng,QU Da-peng,et al. Digital Image Watermarking Algorithm Based on Chaos and Wavelet Transform Coefficient[J].,2015,25(10):34-37.
点击复制

 基于混沌和小波变换系数的数字图像水印算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年10期
页码:
34-37
栏目:
智能、算法、系统工程
出版日期:
2015-10-10

文章信息/Info

Title:
 Digital Image Watermarking Algorithm Based on Chaos and Wavelet Transform Coefficient
文章编号:
1673-629X(2015)10-0034-04
作者:
 段晓杰张绍成曲大鹏范铁生
 辽宁大学 计算中心
Author(s):
 DUAN Xiao-jie;ZHANG Shao-cheng;QU Da-peng;FAN Tie-sheng
关键词:
 小波变换小波系数数字水印抗攻击不可见水印
Keywords:
 wavelet transformwavelet coefficient digitalwatermarkinganti attackinvisible watermark
分类号:
TN911.72
文献标志码:
A
摘要:
 在现有数字图像水印嵌入技术基础上,为了进一步提高数字水印的鲁棒性,文中提出一种基于混沌和小波变换系数的水印算法。该算法主要分为三个步骤:首先运用二维Logistic混沌序列将水印置乱,再用一维Logistic混沌方法随机生成坐标序列,并记录混沌序列初值和控制参数值;然后对载体图像做一级小波分解,提取水平细节分量和垂直细节分量;最后根据水印信息和混沌序列,将指定步长的水平细节系数替换为垂直细节系数,并做小波逆变换。实验结果表明,使用该算法嵌入水印具有很好的不可见性,可以根据步长确定水印嵌入精度和水印容量,并且在几何攻击、JPEG有损压缩、剪切攻击、噪声攻击等情况下均具有较好的鲁棒性,当选择合适的步长,在剪切攻击四分之三时仍然能够提取百分之九十九的水印。
Abstract:
 On the basis of the existing digital image watermarking technology,in order to further improve the robustness of digital water-marking,propose a watermarking algorithm based on chaos and wavelet coefficient. The algorithm is carried out in three steps. First it uses the two-dimensional Logistic chaotic algorithm to scramble watermark,then uses the one-dimensional Logistic chaotic algorithm to gen-erate a sequence of coordinates and record the initial value and the control parameter value of chaotic sequence,and then make one level wavelet decomposition to the carrier image,extracted the horizon detail component and the vertical detail component,finally,according to the watermark information and chaos sequence,replace the specified step of horizon detail component by vertical detail component,inver-sing wavelet transform. The experimental results show that the use of this watermark embedding algorithm has good invisibility,the water-mark embedding accuracy and capacity can depend on steps. Meanwhile,it has better robustness under the attack of geometric,JPEG loss compression,shear attack,noise,etc. When choosing the right step length,shear attacks in 3/4 can still be extracted ninety-nine percent watermark.

相似文献/References:

[1]杨亚 王铮 张素兰 郭飞飞.基于小波变换的多聚焦图像融合[J].计算机技术与发展,2010,(03):56.
 YANG Ya,WANG Zheng,ZHANG Su-lan,et al.Multi - focus Image Fusion Scheme Based on Wavelet Transform[J].,2010,(10):56.
[2]刘会英 张政保 文家福 李占德.一种带纠错编码的小波域自适应盲水印算法[J].计算机技术与发展,2010,(03):140.
 LIU Hui-ying,ZHANG Zheng-bao,WEN Jia-fu,et al.A Wavelet Domain Adaptive Blind Watermarking Algorithm with Error Correcting Encoding[J].,2010,(10):140.
[3]郭航宇 景晓军 尚勇.基于小波变换和数学形态法的车牌定位方法研究[J].计算机技术与发展,2010,(05):13.
 GUO Hang-yu,JING Xiao-jun,SHANG Yong.License Plate Location Method Based on Wavelet Transform and Mathematical Morphology[J].,2010,(10):13.
[4]钱颖雪 左洪福 李耀华.小波与傅里叶变换耦合的静电监测信号去噪法[J].计算机技术与发展,2009,(07):1.
 QIAN Ying-xue,ZUO Hong-fu,LI Yao-hua.Static Monitoring Signal De- noising by Wavelet and FFT[J].,2009,(10):1.
[5]赵兵.小波变换阈值降噪在电力负荷管理终端中的应用[J].计算机技术与发展,2009,(07):206.
 ZHAO Bing.Application of Wavelet Transform Threshold Noise Reduction in Load Management Terminal[J].,2009,(10):206.
[6]张登银 薄顺荣 许扬扬.边缘检测算法改进及其在QoE测定中的应用[J].计算机技术与发展,2009,(08):49.
 ZHANG Deng-yin,BO Shun-rong,XU Yang-yang.Improved Image Edge Detection Algorithm and Its Application in QoE Measurement[J].,2009,(10):49.
[7]朱良燕 毛军军 苗强 吴涛[].合肥市降水变化趋势分形特征分析与预测[J].计算机技术与发展,2009,(09):17.
 ZHU Liang-yan,MAO Jun-jun,MIAO Qiang,et al.Analysis of Precipitation Changes Trend Fractal Features and Forecasts in Hefei[J].,2009,(10):17.
[8]王树梅 王志成 蔡健.一种基于灰度形态学的小波域边缘检测算法[J].计算机技术与发展,2009,(01):32.
 WANG Shu-mei,WANG Zhi-cheng,CAI Jian.A Novel Edge- Detection Algorithm in Wavelet Gray - Scale Morphology[J].,2009,(10):32.
[9]单立场 蔡坤宝 王永东.多分辨率分析在HRV信号分析中的应用[J].计算机技术与发展,2008,(01):250.
 SHAN Li-chang,CAI Kun-bao,WANG Yong-dong.Application of Multi Resolution Analysis to HRV Signal Analysis[J].,2008,(10):250.
[10]邢丹俊 王继成.基于提升小波的自适应阈值图像去噪[J].计算机技术与发展,2008,(02):42.
 XING Dan-jun,WPNG Ji-cheng.Adaptive Threshold Based on Lifting Wavelet Transform for Image Denoising[J].,2008,(10):42.
[11]鄂旭[] [],毕佳娜[],侯建[],等. 一种车牌智能定位方法研究[J].计算机技术与发展,2014,24(10):124.
 E Xu[] [],BI Jia-na[],HOU Jian[],et al. Research on a License Plate Intelligent Localization Method[J].,2014,24(10):124.
[12]李智,张根耀,王蓓. 基于一种新的阈值函数的小波图像去噪[J].计算机技术与发展,2014,24(11):100.
 LI Zh,ZHANG Gen-yao,WANG Bei. Wavelet Image Denoising Based on a New Threshold Function[J].,2014,24(10):100.
[13]张方舟,王徐研,郝庆辉. 基于遗传分形编码的嵌入式小波图像编码算法[J].计算机技术与发展,2015,25(01):128.
 ZHANG Fang-zhou,WANG Xu-yan,HAO Qing-hui. Embedded Wavelet Image Coding Algorithm Based on a Genetic Fractal Coding [J].,2015,25(10):128.
[14]佳伟[],徐煜明[][],肖贤建[]. 基于小波变换和迭代反向投影的超分辨率算法[J].计算机技术与发展,2015,25(02):74.
 SONG Jia-wei[],XU Yu-ming[][],XIAO Xian-jian[]. A Super Resolution Algorithm Based on Wavelet Transform and Iterative Back Projection[J].,2015,25(10):74.
[15]汪慧兰,毛晓辉,杨晶晶,等. 融合小波变换和SIFT特征的商标检索方法[J].计算机技术与发展,2015,25(04):89.
 WANG Hui-lan,MAO Xiao-hui,YANG Jing-jing,et al. Trademark Retrieval Method Combining Wavelet Transform and SIFT Features[J].,2015,25(10):89.
[16]荣雁霞,邱晓晖. 基于小波变换的分块压缩感知算法[J].计算机技术与发展,2015,25(05):29.
 RONG Yan-xia,QIU Xiao-hui. Image Blocking Compressed Sensing Algorithm Based on Wavelet Transform[J].,2015,25(10):29.
[17]王树梅,张文斌. 小波变换在数字图像边缘探测中的应用[J].计算机技术与发展,2015,25(06):16.
 WANG Shu-mei,ZHANG Wen-bin. Application of Wavelet Transform in Edge Detection for Digital Image[J].,2015,25(10):16.
[18]卢曾新,曲大鹏,范铁生. 基于多普勒波和小波变换的图像置乱算法[J].计算机技术与发展,2015,25(07):138.
 LU Zeng-xin,QU Da-peng,FAN Tie-sheng. Image Scrambling Algorithm Based on Doppler and Wavelet Transform[J].,2015,25(10):138.
[19]尚福华[],柴艳领[],杜睿山[],等. 小波双线性插值算法在测井曲线相似中的应用[J].计算机技术与发展,2015,25(09):66.
 HANG Fu-hua[],CHAI Yan-ling[],DU Rui-shan[],et al. Application of Wavelet Bilinear Interpolation Algorithm in Well-logging Curve Similarity[J].,2015,25(10):66.
[20]柴艳领[],唐志涛[].Haar 小波变换在测井曲线相似性对比中的应用[J].计算机技术与发展,2016,26(01):119.
 CHAI Yan-ling[],TANG Zhi-tao[]. pplication of Haar Wavelet Transform in Well-logging Curve Similarity[J].,2016,26(10):119.

更新日期/Last Update: 2015-11-09